Como fazer função exponencial com raiz quadrada

Como fazer função exponencial com raiz quadrada

Rosimar Gouveia

Professora de Matemática e Física

Função Exponencial é aquela que a variável está no expoente e cuja base é sempre maior que zero e diferente de um.

Essas restrições são necessárias, pois 1 elevado a qualquer número resulta em 1. Assim, em vez de exponencial, estaríamos diante de uma função constante.

Além disso, a base não pode ser negativa, nem igual a zero, pois para alguns expoentes a função não estaria definida.

Por exemplo, a base igual a - 3 e o expoente igual a 1/2. Como no conjunto dos números reais não existe raiz quadrada de número negativo, não existiria imagem da função para esse valor.

Exemplos:

f(x) = 4x
f(x) = (0,1)x
f(x) = (⅔)x

Nos exemplos acima 4, 0,1 e são as bases, enquanto x é o expoente.

Gráfico da função exponencial

O gráfico desta função passa pelo ponto (0,1), pois todo número elevado a zero é igual a 1. Além disso, a curva exponencial não toca no eixo x.

Na função exponencial a base é sempre maior que zero, portanto a função terá sempre imagem positiva. Assim sendo, não apresenta pontos nos quadrantes III e IV (imagem negativa).

Abaixo representamos o gráfico da função exponencial.

Como fazer função exponencial com raiz quadrada

Função Crescente ou Decrescente

A função exponencial pode ser crescente ou decrescente.

Será crescente quando a base for maior que 1. Por exemplo, a função y = 2x é uma função crescente.

Para constatar que essa função é crescente, atribuímos valores para x no expoente da função e encontramos a sua imagem. Os valores encontrados estão na tabela abaixo.

Como fazer função exponencial com raiz quadrada

Observando a tabela, notamos que quando aumentamos o valor de x, a sua imagem também aumenta. Abaixo, representamos o gráfico desta função.

Como fazer função exponencial com raiz quadrada

Por sua vez, as funções cujas bases são valores maiores que zero e menores que 1, são decrescentes. Por exemplo, f(x) = (1/2)x é uma função decrescente.

Calculamos a imagem de alguns valores de x e o resultado encontra-se na tabela abaixo.

Como fazer função exponencial com raiz quadrada

Notamos que para esta função, enquanto os valores de x aumentam, os valores das respectivas imagens diminuem. Desta forma, constatamos que a função f(x) = (1/2)x é uma função decrescente.

Com os valores encontrados na tabela, traçamos o gráfico dessa função. Note que quanto maior o x, mais perto do zero a curva exponencial fica.

Como fazer função exponencial com raiz quadrada

Função Logarítmica

A inversa da função exponencial é a função logarítmica. A função logarítmica é definida como f(x) = logax, com a real positivo e a ≠ 1.

Sendo, o logaritmo de um número definido como o expoente ao qual se deve elevar a base a para obter o número x, ou seja, y = logax ⇔ ay = x.

Uma relação importante é que o gráfico de duas funções inversas são simétricos em relação a bissetriz dos quadrantes I e III.

Desta maneira, conhecendo o gráfico da função exponencial de mesma base, por simetria podemos construir o gráfico da função logarítmica.

Como fazer função exponencial com raiz quadrada

No gráfico acima, observamos que enquanto a função exponencial cresce rapidamente, a função logarítmica cresce lentamente.

Leia também:

Exercícios de Vestibular Resolvidos

1. (Unit-SE) Uma determinada máquina industrial se deprecia de tal forma que seu valor, t anos após a sua compra, é dado por v(t) = v0 . 2 -0,2t, em que v0 é uma constante real.

Se, após 10 anos, a máquina estiver valendo R$ 12 000,00, determine o valor que ela foi comprada.

2. (PUCC-SP) Numa certa cidade, o número de habitantes, num raio de r km a partir do seu centro é dado por P(r) = k . 23r, em que k é constante e r > 0.

Se há 98 304 habitantes num raio de 5 km do centro, quantos habitantes há num raio de 3 km do centro?

Ver Resposta

P(r) = k . 23r
98 304 = k . 23.5
98 304 = k . 215
k = 98 304/215

P (3) = k. 23.3


P (3) = k . 29
P (3) =( 98 304/215 ). 29
P (3) = 98 304/26
P(3) = 1536

1536 é o número de habitantes num raio de 3 km do centro.

Como fazer função exponencial com raiz quadrada

Bacharel em Meteorologia pela Universidade Federal do Rio de Janeiro (UFRJ) em 1992, Licenciada em Matemática pela Universidade Federal Fluminense (UFF) em 2006 e Pós-Graduada em Ensino de Física pela Universidade Cruzeiro do Sul em 2011.

A função raiz é identificada quando na lei de formação da função a variável se encontra dentro de um radical. A função raiz quadrada e a função raiz cúbica são exemplos de função raiz. Como a maioria dos valores da imagem de uma raiz é um número irracional, a função raiz é considerada uma função irracional.

O conjunto do domínio da função possui restrição quando o índice da função for par, pois o radicando necessariamente tem que ser positivo para que exista raiz. No estudo das funções, é sempre possível realizar sua representação gráfica.

Veja também: Função polinomial — função em que a lei de formação pode ser descrita por um polinômio

Resumo sobre função raiz

  • A função raiz possui em sua lei de formação uma variável dentro do radical.

  • É preciso analisar o índice do radical da raiz para encontrar seu domínio.

  • Quando a função raiz possui índice par, o seu radicando é necessariamente positivo.

  • Não existe raiz com índice par de um número negativo no conjunto dos números reais.

  • A função raiz quadrada e a função raiz cúbica são exemplos de função raiz, sendo a primeira a mais comum.

Função raiz: o que é?

Quando uma função possui uma ou mais variáveis dentro de um radical, a chamamos de função raiz. Ela sempre terá uma raiz de índice n, sendo que a função raiz mais comum é a função raiz quadrada. Veja a lei de formação de algumas funções raiz a seguir:

➝ Lei de formação de algumas funções raiz

  • \(f\left(x\right)=\sqrt x\)

  • \(g\left(x\right)=\sqrt{x^2-2}\)

  • \(h\left(x\right)=1+\sqrt[3]{x-2}\)

  • \(i\left(x\right)=\sqrt[4]{\frac{x}{3}}\)

Para calcular o valor numérico de uma função raiz, basta realizarmos a substituição da sua variável pelo valor desejado. Vale ressaltar que em muitos casos, o valor numérico de uma função raiz é um número irracional.

➝ Exemplos de cálculo da função raiz

Dada a função \(f\left(x\right)=\sqrt{x-4}\), calcule:

a) \(f\left(13\right)\)

b) \(f\left(7\right)\)

Resolução:

a) \(f\left(13\right)\)

Quando x = 13, temos:

\(f\left(13\right)=\sqrt{13-4}=\sqrt9=3\)

b) \(f\left(7\right)\)

Quando x = 7, temos:

\(f\left(7\right)=\sqrt{7-4}=\sqrt3\)

Como a \(\sqrt3\) é um número irracional, podemos afirmar que \(f\left(7\right)=\sqrt3\). Caso seja necessário calcular a raiz quadrada, utilizamos uma aproximação para essa raiz, como 1,7.

Dada a função \(g\left(x\right)=\sqrt[3]{x}+2x\), calcule \(g\left(8\right)\).

Resolução:

\(g\left(8\right)=\sqrt[3]{8}+2\cdot8\)

\(g\left(8\right)=2+16\)

\(g\left(8\right)=18\)

Domínio de uma função raiz

No estudo de uma função raiz, conhecendo a sua lei de formação, é importante compreender que nem sempre o domínio de uma função é o conjunto dos números reais, pois existe uma restrição na radiciação quando o índice da função é par. Sabemos que não existe raiz com índice par de um número negativo no conjunto dos números reais.

Considere a função a seguir:

\(f\left(x\right)=\sqrt{3x+4}\)

Qual é o conjunto domínio dessa função quando a analisamos no conjunto dos números reais?

Resolução:

Para que exista imagem para um determinado valor de x, temos:

\(3x\ +\ 4\ \geq\ 0\ \)

\(3x\ \geq\ -\ 4\ \)

\(x\geq-\frac{4}{3}\)

Assim, o domínio dessa função é:

\({\ x\ \in\ \mathbb{R}\ |\ x\ \geq\ -\frac{4}{3}}\)

Quando o índice da função raiz é ímpar, o domínio da função não tem restrição, podendo ser o conjunto dos números reais.

Saiba também: Domínio, contradomínio e imagem de uma função — qual a diferença?

Gráfico da função raiz

O gráfico da função raiz é sempre crescente.

Quando a função raiz possui um índice par, seu gráfico estará somente no 1º quadrante:

Gráfico da função raiz com índice par.

Perceba que ao aumentar o valor do índice, a função continua crescente.

Quando a função possui índice ímpar, o gráfico da função raiz estará tanto no 1º quanto no 3º quadrante.

Como fazer função exponencial com raiz quadrada
Gráfico da função raiz com índice ímpar.

Leia também: Como é o gráfico de uma função exponencial?

Exercícios resolvidos sobre função raiz

Questão 1

Analisando a função \(\ f:\ A\ \rightarrow B\ \), com lei de formação \(f\left(x\right)=\sqrt[3]{x-4}\), julgue as afirmativas a seguir:

I) O domínio dessa função é necessariamente os valores de x, tal que \(x\geq\ 4\).

II) \(f\left(-4\right)=-2\)

III) Essa função é uma função raiz.

Marque a alternativa correta:

A) Somente a afirmativa I é falsa.

B) Somente a afirmativa II é falsa.

C) Somente a afirmativa III é falsa.

D) Todas as afirmativas são verdadeiras.

Resolução:

Alternativa A

I) Falsa

Como o índice da raiz é igual a 3, um número ímpar, o domínio dessa função pode ser o conjunto dos números reais, não havendo uma restrição para o valor de x.

II) Verdadeira

Calculando \(f\left(-4\right)\), temos:

\(f\left(-4\right)=\sqrt[3]{-4-4}\)

\(f\left(-4\right)=\sqrt[3]{-8}\)

\(f\left(-4\right)=-2\)

III) Verdadeira

Como a variável está dentro do radical, essa função é de fato uma função raiz.

Questão 2

Analisando a função \(f\left(x\right)=\sqrt{2x+6}\) no conjunto dos números reais, podemos afirmar que:

A) \(D\ =\ {x\ \in\ \mathbb{R}\ |\ x\ \geq\ 2}\)

B) \(D\ =\ {x\ \in\ \mathbb{R}\ |\ x\ \geq\ -6}\)

C) \(D\ =\ {x\ \in\ \mathbb{R}\ |\ x\ \geq\ -3}\)

D) \(D\ =\ {x\ \in\ \mathbb{R}\ |\ x\ \geq\ 4}\)

Resolução:

Alternativa C

Analisando a lei de formação, temos:

\(2x\ +\ 6\ \geq\ 0\)

\(2x\ \geq\ -6\)

\(x\geq\frac{-6}{2}\)

\(x\ \geq\ -3\ \)

Portanto:

\(D\ =\ x\ \in\ R\ |\ x\ \geq\ -3\)