Which method of defrosting results in the greatest loss of juiciness?

1. Ahn D. U., Olson D. C., Jo C., Chen X., Wu C., Lee J. I. Effect of muscle type, packaging and irradiation on lipid oxidation, volatile production, and color in raw pork patties. Meat Sci. (1998);49:29–39. doi: 10.1016/S0309-1740(98)90037-7. [PubMed] [CrossRef] [Google Scholar]

2. Ambrosiadis I., Theodorakakos N., Georgakis S., Lekas S. Influence of thawing methods on the quality of frozen meat and drip loss. Fleishwirtsch. (1994);74:284–286. [Google Scholar]

3. AMSA. Research guidelines for cookery, sensory evaluation, and instrumental tenderness measurements of fresh meat. Chicago III. American Meat Science Association and Nutritional Live Stock and Meat Board; (1995). [Google Scholar]

4. Berry E. D., Koohmaraic M. Effect of different levels of beef bacterial microflora on the growth and survival of Escherichia coli 0157:H7 on beef carcass tissue. J. Food Prod. (2001);64:1138–1144. [PubMed] [Google Scholar]

5. Bertelsen G., Jakobsen M., Juncher D., Moller J., Kroger-Ohlsen M., Weber C., Skibsted L. H. Oxidation, shelf-life and stability of meat and meat products; Proceedings of the 46th international congress of meat science and technology; (2000). (4.II-L2:516-524) [Google Scholar]

6. Bing L., Sun D. W. Novel methods for rapid freezing and thawing of foods-a review. J. Food Eng. (2002);54:175–182. doi: 10.1016/S0260-8774(01)00209-6. [CrossRef] [Google Scholar]

7. Buege J. A., Aust S. D. Methods Enzymol. Vol. 52. Academic press Inc.; (1978). Microsomal lipid peroxidation; pp. 302–310. [PubMed] [CrossRef] [Google Scholar]

8. Chemat F., Zill-e-Huma K. M. K. Application of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry. (2011);18:813–835. doi: 10.1016/j.ultsonch.2010.11.023. [PubMed] [CrossRef] [Google Scholar]

9. Das A. K., Anjaneyulu A. S. R., Verma A. K., Kondaiah N. Effect of full-fat soy paste and soy granules on quality of goat meat patties. Int. J. Food Sci. Technol. (2008);43:383–392. doi: 10.1111/j.1365-2621.2006.01449.x. [CrossRef] [Google Scholar]

10. Deatherage F. E., Hamm R. Influence of freezing and thawing on hydration and charges of the muscle proteins. Food Res. (1960);25:623–629. doi: 10.1111/j.1365-2621.1960.tb00006.x. [CrossRef] [Google Scholar]

11. Dempster J. F. Bacteriological status of minced beef. Irish J. Food Sci. Technol. (1986);2:1–11. [Google Scholar]

12. Devatkal S., Mendiratta S. K., Kondaiah N. Quality characteristics of loaves from buffalo meat, liver and vegetables. Meat Sci. (2004);67:377–383. doi: 10.1016/j.meatsci.2003.11.006. [PubMed] [CrossRef] [Google Scholar]

13. Eastridge J. S., Bowker B. C. Effect of rapid thawing on the meat quality attributes of USDA select beef strip loins steaks. J. Food Sci. (2011);76:156–162. [PubMed] [Google Scholar]

14. Elkhalifa E. A., Anglemier A. F., Kennick W. H., Elgasim E. A. phosphokinase activity and degradation of creatine phosphate and adenosine triphosphate. J. Food Sci. (1984);49:595–597. doi: 10.1111/j.1365-2621.1984.tb12477.x. [CrossRef] [Google Scholar]

15. Farouk M. M., Swan J. E. Effect of rigor temperature and frozen storage on functional properties of hotboned manufacturing beef. Meat Sci. (1998);49:233–247. doi: 10.1016/S0309-1740(97)00134-4. [PubMed] [CrossRef] [Google Scholar]

16. Farouk M. M., Wieliczko K. J., Merts I. Ultrafast freezing and low storage temperatures are not necessary to maintain the functional properties of manufacturing beef. Meat Sci. (2004);66:171–179. doi: 10.1016/S0309-1740(03)00081-0. [PubMed] [CrossRef] [Google Scholar]

17. Fennema O., Powrie W. D. Fundamentals of low-temperature food preservation. Adv. Food Res. (1964);13:219–347. doi: 10.1016/S0065-2628(08)60102-0. [PubMed] [CrossRef] [Google Scholar]

18. Fennema O. An over-all view of low temperature food preservation. Cryobiol. (1966);3:197–213. doi: 10.1016/S0011-2240(66)80013-5. [PubMed] [CrossRef] [Google Scholar]

19. Grau R., Hamm G. Eine Einfache Methode zur Bestimmung der Wasserbindung in Muskel. Die Naturwissenschaften. (1953);40:29–30. doi: 10.1007/BF00590052. [CrossRef] [Google Scholar]

20. Honikel K. O., Kim C. J., Hamm R., Roncales P. Sarcomere shortening of pre rigor muscles and its influence on drip loss. Meat Sci. (1986);16:267–282. doi: 10.1016/0309-1740(86)90038-0. [PubMed] [CrossRef] [Google Scholar]

21. Huff-Lonergan E., Lonergan S. M. Mechanism of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. (2005);71:194–204. doi: 10.1016/j.meatsci.2005.04.022. [PubMed] [CrossRef] [Google Scholar]

22. ISO. Recommendation of the meeting of the subcommittee, International Organization for Standardization, on meat and meat products. ISO/TC-36/SC-6. The Netherlands: (1995). pp. 10–18. [Google Scholar]

23. Jay J. M. Modern food microbiology. (4th Ed.) CBS Publishers and Distribut; New Delhi: (1996). [Google Scholar]

24. Jeong J. Y., Kim G. D., Yan H. S., Joo S. T. Effect of freeze-thaw cycles on physicochemical properties and color stability of beef semimembranosus muscle. Food Res. Int. (2011);44:3222–3228. doi: 10.1016/j.foodres.2011.08.023. [CrossRef] [Google Scholar]

25. Jin S. K., Kim I. S., Choi Y. J., Kim B. G., Hur S. J. LWT Food Sci. Technol. Vol. 42. The development of imitation crab sticks containing chicken breast surimi; (2009). The development of imitation crab sticks containing chicken breast surimi. LWT Food Sci; pp. 150–156. [CrossRef] [Google Scholar]

26. Jin-ping L. I., Xing-lian X. U., Guang-hong Z. H. O. U. Effect of freeze-thaw cycle on meat quality of beef striploin. Jiangsu J. Agril. Sci. (2012);95:230–237. (Key Laboratory of Meat Processing and Quality Control, Ministry of Education, National Center for Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China) [Google Scholar]

27. Joo S. T., Kauffman R. G., Kim B. C., Park G. B. The relationship of sarcoplasmic and myofibrillar protein solubility to color and water-holding capacity in porcine longissimus muscle. Meat Sci. (1999);52:291–297. doi: 10.1016/S0309-1740(99)00005-4. [PubMed] [CrossRef] [Google Scholar]

28. Joo S. T., Kim G. D. Meat quality traits and control technologies In: Joo ST, editor. Control of meat quality. (2011). pp. 6–10. [Google Scholar]

29. Jun Q., Chunbao L., Yinji C., Feifei G., Xinglian X., Guanghong Z. Changes in meat quality of ovine longissimusdorsi muscle in response to repeated freeze and thaw. Meat Sci. (2012);92:619–626. doi: 10.1016/j.meatsci.2012.06.009. [PubMed] [CrossRef] [Google Scholar]

30. Kenny T., Ward P., Lennon A., Sullivan P., McDonald K., O’Neill E. Adding value of forequarter muscles-A manual for industry. Teagasc; (2008). [Google Scholar]

31. Kondratowicz J., Chwastowska I. Właściwości technologic znemięsa wiper zowegow zalezności odczasuzamrazal niczego przechowy waniaimetody rozmrazania. Zywność (Nauka, Technologia, Jakość) (2005);3:11–20. [Google Scholar]

32. Kondratowicz J., Chwastowska-Siwiecka I., Burczyk E. Technological properties of pork thawed in the atmospheric air or in the microwave oven as determined during a six-month deep-freeze storage. Animal Sci. Papers Reports. (2008);26:175–181. [Google Scholar]

33. Kristensen L., Purslow P. P. The effect of ageing on the water-holding capacity of pork: Role of cytoskeletal proteins. Meat Sci. (2001);58:17–23. doi: 10.1016/S0309-1740(00)00125-X. [PubMed] [CrossRef] [Google Scholar]

34. Lawrie R. A. Lawrie’s meat science. (6th ed.) Technomic Publishing Inc.; Lancaster, PA: (1998). [Google Scholar]

35. Lee Frank A., Robert F. B., Pearson A. M., John I. M., Frances V. Effect of freezing rate on meat appearance, palatability, and vitamin content of beef. J. Food Sci. (1950);15:8–15. doi: 10.1111/j.1365-2621.1950.tb16446.x. [PubMed] [CrossRef] [Google Scholar]

36. Leygonie C., Britz T. J., Hoffman L. C. Meat quality comparison between fresh and frozen/thawed ostrich M. iliofibularis. Meat Sci. (2012) provisionally accepted. [PubMed] [Google Scholar]

37. Lui Z., Xiong Y., Chen J. Protein oxidation enhances hydration but suppresses water-holding capacity in Porcine Longissimus muscle. J. Agric. Food Chem. (2010);58:10697–10704. doi: 10.1021/jf102043k. [PubMed] [CrossRef] [Google Scholar]

38. Macfarlane J. J. Pre-rigor pressurization of muscle: effects on pH, shear value and taste panel assessment. J. Food Sci. (1973);38:294–297. doi: 10.1111/j.1365-2621.1973.tb01409.x. [CrossRef] [Google Scholar]

39. Mancini R. A., Hunt M. C. Current research in meat color. Meat Sci. (2005);71:100–121. doi: 10.1016/j.meatsci.2005.03.003. [PubMed] [CrossRef] [Google Scholar]

40. Marenzi C. Proper meat storage prevents spoilage. Poultry-Misset. (1986);6:12–15. [Google Scholar]

41. Marriott N. G., Garcia R. A., Pullen J. H., Lee D. R. Effect of thaw conditions on ground beef. J. Food Protection. (1980);43:180–184. [Google Scholar]

42. McMillin K. W. Where is MAP Going? A review and future potential of modified atmosphere packaging for meat. Meat Sci. (2008);80:43–65. doi: 10.1016/j.meatsci.2008.05.028. [PubMed] [CrossRef] [Google Scholar]

43. Melody J. L., Lonergan S. M., Rowe L. J., Huiatt T. W., Mayes M. S., Huff-Lonergan E. Early postmortem biochemical factors influence tenderness and water holding capacity of three porcine muscles. J. Anim. Sci. (2004);82:1195–1205. [PubMed] [Google Scholar]

44. Muela E., Sañudo C., Campo M. M., Medel I., Beltrán J. A. Effect of freezing method and frozen storage duration on instrumental quality of lamb throughout display. Meat Sci. (2010);84:662–669. doi: 10.1016/j.meatsci.2009.10.028. [PubMed] [CrossRef] [Google Scholar]

45. Nasreen M. A., Ayad B. A., Hozan J. H. Study of some chemical, quality, sensory and bacteriology characteristics of frozen beef meat imported to Sulaimani as comlpared to local meat. J. Tikrit University for Agril. Sci. (2012);12:29–39. [Google Scholar]

46. Ngapo T. M., Martin J. F., Dransfield E. Consumer choices of pork chops: Results from three panels in France. Food Quality and Preference. (2004);15:349–359. doi: 10.1016/S0950-3293(03)00082-X. [CrossRef] [Google Scholar]

47. Nolsøe H., Undeland I. The acid and alkaline solubilization process for the isolation of muscle proteins: state of the art. Food Bioprocess Technol. (2009);2:1–27. doi: 10.1007/s11947-008-0088-4. [CrossRef] [Google Scholar]

48. Paul P., Child A. Effect of Freezing and Thawing Beef Muscle upon Press Fluid, Losses, and Tenderness. J. Food Sci. (1937);2:339–347. doi: 10.1111/j.1365-2621.1937.tb16525.x. [CrossRef] [Google Scholar]

49. Rahman S. M., Park J., Song K. B., Al-Harbi N. A., Oh D. H. Effect of slightly acidic low concentration electrolyzed water on microbiological, physicochemical, and sensory quality of fresh chicken breast meat. J. Food Sci. (2012);77:M35–41. doi: 10.1111/j.1750-3841.2011.02454.x. [PubMed] [CrossRef] [Google Scholar]

50. Rajkumar V., Agnihotri M. K., Sharma N. Quality and shelf life of vacuumed and aerobic packed chevon patties under refrigeration. Asian-Austral. J. Anim. Sci. (2004);17:548–553. doi: 10.5713/ajas.2004.548. [CrossRef] [Google Scholar]

51. Sen A., Sharma N. Effect of freeze-thaw cycles during storage on quality of meat and liver of buffalo. J. Food Sci. Technol. (1999);36:28–31. [Google Scholar]

52. Soyer A., Özalp B., Dalmis Ü., Bilgin V. Effects of freezing temperature and duration of frozen storage on lipid and protein oxidation in chicken meat. Food Chem. (2010);120:1025–1030. doi: 10.1016/j.foodchem.2009.11.042. [CrossRef] [Google Scholar]

53. Straadt I. K., Rasmussen M., Andersen M. J., Bertram H. C. Aging-induced changes in microstructure and water distribution in fresh and cooked pork in relation to water-holding capacity and cooking loss - A combined confocal laser scanning microscopy (CLSM) and low-field nuclear magnetic resonance relaxation study. Meat Sci. (2007);75:687–695. doi: 10.1016/j.meatsci.2006.09.019. [PubMed] [CrossRef] [Google Scholar]

54. Sultana A., Huque K. S., Amanullah S. M. Development of tasty marinating kit for tenderization and preservation of beef chuck. The Bangladesh Veterinarian. (2009);26:23–30. [Google Scholar]

55. Sultana A., Nakanishi A., Roy B. C., Mizunoya W., Tatsumi R., Ito T., Tabata S., Rashid H., Katayama S., Ikeuchi Y. Quality Improvement of Frozen and Chilled Beef biceps femoris with the Application of Salt-bicarbonate Solution. Asian-Austral. J. Anim. Sci. (2008);21:903–911. doi: 10.5713/ajas.2008.70544. [CrossRef] [Google Scholar]

56. Tan W., Shelef L. A. Effect of sodium chloride and lactates on chemical and microbial changes in refrigerated and frozen fresh ground pork. Meat Sci. (2002);62:27–32. doi: 10.1016/S0309-1740(01)00223-6. [PubMed] [CrossRef] [Google Scholar]

57. Traore S., Aubry L., Gatellier P., Przybylski W., Jaworska D., Kajak-Siemaszko K., Santé-Lhoutellier V. Higher drip loss is associated with protein oxidation. Meat Sci. (2012);90:917–924. doi: 10.1016/j.meatsci.2011.11.033. [PubMed] [CrossRef] [Google Scholar]

58. Tucker G. S. Food biodeterioration and methods of preservation. In: Coles R, Kirwan MJ, editors. Food and beverage packaging technology. 2nd Ed. Blackwell Publishing Ltd; West Sussex: (2011). pp. 31–58. [Google Scholar]

59. Vieira C., Diaz M. Y., Martínez B., García-Cachán M. D. Effect of frozen storage conditions (temperature and length of storage) on microbial and sensory quality of rustic crossbred beef at different stages of aging. Meat Sci. (2009);83:398–404. doi: 10.1016/j.meatsci.2009.06.013. [PubMed] [CrossRef] [Google Scholar]

60. Whipple G., Koohmaraie M. Freezing and calcium chloride marination on beef tenderness and calpastatin activity. J. Anim. Sci. (1992);70:3081–3085. [PubMed] [Google Scholar]

61. Xia X., Kong B., Liu Q., Liu J. Physicochemical change and protein oxidation in porcine longissimusdorsi as influenced by different freeze-thaw cycles. Meat Sci. (2009);83:239–245. doi: 10.1016/j.meatsci.2009.05.003. [PubMed] [CrossRef] [Google Scholar]


Page 2

Freezing-thawing interactive effects on sensory quality (mean±SE) of thawed beef samples before cook in different cycles and thawing methods

InteractionsColorOdor
C1 × T14.73a ± 0.19 4.46a ± 0.22
C1 × T23.27bc ±0.193.09b ± 0.22
C1 × T33.00c ± 0.193.09b ± 0.22
C2 × T14.64a ± 0.193.82ab ± 0.22
C2 × T22.64c ± 0.193.00b ± 0.22
C2 × T34.09ab ± 0.193.54ab ± 0.22
C3 × T13.09c ± 0.19 3.00b ± 0.22
C3 × T23.18c ± 0.193.36b ± 0.22
C3 × T34.18a ± 0.193.73ab ± 0.22
Level of Significance****