Which of the following best describes the reproductive ability of C elegans following the herd induced in the first experiment?

“Effective population size” is the size of an idealized population that would have the same effect of random sampling on gene frequency as that in the actual population.

From: Philosophy of Biology, 2007

1. Alvarez Y, Chen K, Reynolds AL, Waghorne N, O’Connor JJ, Kennedy BN. Predominant cone photoreceptor dysfunction in a hyperglycaemic model of non-proliferative diabetic retinopathy. Dis Model Mech 3: 236–245, 2010. doi: 10.1242/dmm.003772. [PubMed] [CrossRef] [Google Scholar]

2. Amsterdam A, Burgess S, Golling G, Chen W, Sun Z, Townsend K, Farrington S, Haldi M, Hopkins N.. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13: 2713–2724, 1999. doi: 10.1101/gad.13.20.2713. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Anderson JL, Carten JD, Farber SA. Zebrafish lipid metabolism: from mediating early patterning to the metabolism of dietary fat and cholesterol. Methods Cell Biol 101: 111–141, 2011. doi: 10.1016/B978-0-12-387036-0.00005-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Anderson KV, Jürgens G, Nüsslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42: 779–789, 1985. doi: 10.1016/0092-8674(85)90274-0. [PubMed] [CrossRef] [Google Scholar]

5. Andersson O, Adams BA, Yoo D, Ellis GC, Gut P, Anderson RM, German MS, Stainier DY. Adenosine signaling promotes regeneration of pancreatic β cells in vivo. Cell Metab 15: 885–894, 2012. doi: 10.1016/j.cmet.2012.04.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Andreux PA, Williams EG, Koutnikova H, Houtkooper RH, Champy MF, Henry H, Schoonjans K, Williams RW, Auwerx J. Systems genetics of metabolism: the use of the BXD murine reference panel for multiscalar integration of traits. Cell 150: 1287–1299, 2012. doi: 10.1016/j.cell.2012.08.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Aoki Y, Niihori T, Banjo T, Okamoto N, Mizuno S, Kurosawa K, Ogata T, Takada F, Yano M, Ando T, Hoshika T, Barnett C, Ohashi H, Kawame H, Hasegawa T, Okutani T, Nagashima T, Hasegawa S, Funayama R, Nagashima T, Nakayama K, Inoue S, Watanabe Y, Ogura T, Matsubara Y. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet 93: 173–180, 2013. doi: 10.1016/j.ajhg.2013.05.021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Armstrong GA, Liao M, You Z, Lissouba A, Chen BE, Drapeau P. Homology directed knockin of point mutations in the zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system. PLoS One 11: e0150188, 2016. doi: 10.1371/journal.pone.0150188. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Arnaout R, Ferrer T, Huisken J, Spitzer K, Stainier DY, Tristani-Firouzi M, Chi NC. Zebrafish model for human long QT syndrome. Proc Natl Acad Sci USA 104: 11316–11321, 2007. doi: 10.1073/pnas.0702724104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Arnaout R, Reischauer S, Stainier DY. Recovery of adult zebrafish hearts for high-throughput applications. J Vis Exp 12: 94, 2014. doi: 10.3791/52248. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Arrenberg AB, Stainier DY, Baier H, Huisken J. Optogenetic control of cardiac function. Science 330: 971–974, 2010. doi: 10.1126/science.1195929. [PubMed] [CrossRef] [Google Scholar]

12. Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A, Kishimoto Y, Hibi M, Kawakami K. Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci USA 105: 1255–1260, 2008. doi: 10.1073/pnas.0704963105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Asimaki A, Kapoor S, Plovie E, Karin Arndt A, Adams E, Liu Z, James CA, Judge DP, Calkins H, Churko J, Wu JC, MacRae CA, Kléber AG, Saffitz JE. Identification of a new modulator of the intercalated disc in a zebrafish model of arrhythmogenic cardiomyopathy. Sci Transl Med 6: 240ra74, 2014. doi: 10.1126/scitranslmed.3008008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Auer TO, Del Bene F. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 69: 142–150, 2014. doi: 10.1016/j.ymeth.2014.03.027. [PubMed] [CrossRef] [Google Scholar]

15. Austin-Tse C, Halbritter J, Zariwala MA, Gilberti RM, Gee HY, Hellman N, Pathak N, Liu Y, Panizzi JR, Patel-King RS, Tritschler D, Bower R, O’Toole E, Porath JD, Hurd TW, Chaki M, Diaz KA, Kohl S, Lovric S, Hwang DY, Braun DA, Schueler M, Airik R, Otto EA, Leigh MW, Noone PG, Carson JL, Davis SD, Pittman JE, Ferkol TW, Atkinson JJ, Olivier KN, Sagel SD, Dell SD, Rosenfeld M, Milla CE, Loges NT, Omran H, Porter ME, King SM, Knowles MR, Drummond IA, Hildebrandt F. Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am J Hum Genet 93: 672–686, 2013. doi: 10.1016/j.ajhg.2013.08.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Baek JS, Fang L, Li AC, Miller YI. Ezetimibe and simvastatin reduce cholesterol levels in zebrafish larvae fed a high-cholesterol diet. Cholesterol 2012: 564705, 2012. doi: 10.1155/2012/564705. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Bainbridge MN, Davis EE, Choi WY, Dickson A, Martinez HR, Wang M, Dinh H, Muzny DM, Pignatelli R, Katsanis N, Boerwinkle E, Gibbs RA, Jefferies JL. Loss of function mutations in NNT are associated with left ventricular noncompaction. Circ Cardiovasc Genet 8: 544–552, 2015. doi: 10.1161/CIRCGENETICS.115.001026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Baldessari D, Mione M. How to create the vascular tree? (Latest) help from the zebrafish. Pharmacol Ther 118: 206–230, 2008. doi: 10.1016/j.pharmthera.2008.02.010. [PubMed] [CrossRef] [Google Scholar]

19. Barut BA, Zon LI. Realizing the potential of zebrafish as a model for human disease. Physiol Genomics 2: 49–51, 2000. [PubMed] [Google Scholar]

20. Bates JM, Akerlund J, Mittge E, Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2: 371–382, 2007. doi: 10.1016/j.chom.2007.10.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Becker JR, Deo RC, Werdich AA, Panàkovà D, Coy S, MacRae CA. Human cardiomyopathy mutations induce myocyte hyperplasia and activate hypertrophic pathways during cardiogenesis in zebrafish. Dis Model Mech 4: 400–410, 2011. doi: 10.1242/dmm.006148. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG II, Tan W, Penheiter SG, Ma AC, Leung AY, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC. In vivo genome editing using a high-efficiency TALEN system. Nature 491: 114–118, 2012. doi: 10.1038/nature11537. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Begley CG, Ellis LM. Drug development: Raise standards for preclinical cancer research. Nature 483: 531–533, 2012. doi: 10.1038/483531a. [PubMed] [CrossRef] [Google Scholar]

24. Beis D, Bartman T, Jin SW, Scott IC, D’Amico LA, Ober EA, Verkade H, Frantsve J, Field HA, Wehman A, Baier H, Tallafuss A, Bally-Cuif L, Chen JN, Stainier DY, Jungblut B. Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development 132: 4193–4204, 2005. doi: 10.1242/dev.01970. [PubMed] [CrossRef] [Google Scholar]

25. Bentzinger CF, Wang YX, Dumont NA, Rudnicki MA. Cellular dynamics in the muscle satellite cell niche. EMBO Rep 14: 1062–1072, 2013. doi: 10.1038/embor.2013.182. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Benz A, Kossack M, Auth D, Seyler C, Zitron E, Juergensen L, Katus HA, Hassel D. miR-19b regulates ventricular action potential duration in zebrafish. Sci Rep 6: 36033, 2016. doi: 10.1038/srep36033. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Bernard-Kargar C, Ktorza A. Endocrine pancreas plasticity under physiological and pathological conditions. Diabetes 50, Suppl 1: S30–S35, 2001. doi: 10.2337/diabetes.50.2007.S30. [PubMed] [CrossRef] [Google Scholar]

28. Blum M, De Robertis EM, Wallingford JB, Niehrs C. Morpholinos: Antisense and Sensibility. Dev Cell 35: 145–149, 2015. doi: 10.1016/j.devcel.2015.09.017. [PubMed] [CrossRef] [Google Scholar]

29. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326: 1509–1512, 2009. doi: 10.1126/science.1178811. [PubMed] [CrossRef] [Google Scholar]

30. Bonetti M, Paardekooper Overman J, Tessadori F, Noël E, Bakkers J, den Hertog J. Noonan and LEOPARD syndrome Shp2 variants induce heart displacement defects in zebrafish. Development 141: 1961–1970, 2014. doi: 10.1242/dev.106310. [PubMed] [CrossRef] [Google Scholar]

31. Boutros M, Heigwer F, Laufer C. Microscopy-based high-content screening. Cell 163: 1314–1325, 2015. doi: 10.1016/j.cell.2015.11.007. [PubMed] [CrossRef] [Google Scholar]

32. Bowen ME, Henke K, Siegfried KR, Warman ML, Harris MP. Efficient mapping and cloning of mutations in zebrafish by low-coverage whole-genome sequencing. Genetics 190: 1017–1024, 2012. doi: 10.1534/genetics.111.136069. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Bradley MN, Hong C, Chen M, Joseph SB, Wilpitz DC, Wang X, Lusis AJ, Collins A, Hseuh WA, Collins JL, Tangirala RK, Tontonoz P. Ligand activation of LXR beta reverses atherosclerosis and cellular cholesterol overload in mice lacking LXR alpha and apoE. J Clin Invest 117: 2337–2346, 2007. doi: 10.1172/JCI31909. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Brand M, Heisenberg CP, Jiang YJ, Beuchle D, Lun K, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, van Eeden FJ, Nüsslein-Volhard C. Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. Development 123: 179–190, 1996. [PubMed] [Google Scholar]

35. Breslow JL. Mouse models of atherosclerosis. Science 272: 685–688, 1996. doi: 10.1126/science.272.5262.685. [PubMed] [CrossRef] [Google Scholar]

36. Brown DR, Samsa LA, Qian L, Liu J. Advances in the study of heart development and disease using zebrafish. J Cardiovasc Dev Dis 3: 13, 2016. doi: 10.3390/jcdd3020013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M, Menendez TM, Brugada J, Pollevick GD, Wolpert C, Burashnikov E, Matsuo K, Wu YS, Guerchicoff A, Bianchi F, Giustetto C, Schimpf R, Brugada P, Antzelevitch C. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109: 30–35, 2004. doi: 10.1161/01.CIR.0000109482.92774.3A. [PubMed] [CrossRef] [Google Scholar]

38. Bruni G, Rennekamp AJ, Velenich A, McCarroll M, Gendelev L, Fertsch E, Taylor J, Lakhani P, Lensen D, Evron T, Lorello PJ, Huang XP, Kolczewski S, Carey G, Caldarone BJ, Prinssen E, Roth BL, Keiser MJ, Peterson RT, Kokel D. Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nat Chem Biol 12: 559–566, 2016. doi: 10.1038/nchembio.2097. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Burger A, Lindsay H, Felker A, Hess C, Anders C, Chiavacci E, Zaugg J, Weber LM, Catena R, Jinek M, Robinson MD, Mosimann C. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development 143: 2025–2037, 2016. doi: 10.1242/dev.134809. [PubMed] [CrossRef] [Google Scholar]

40. Bussmann J, Schulte-Merker S. Rapid BAC selection for tol2-mediated transgenesis in zebrafish. Development 138: 4327–4332, 2011. doi: 10.1242/dev.068080. [PubMed] [CrossRef] [Google Scholar]

41. Cao J, Navis A, Cox BD, Dickson AL, Gemberling M, Karra R, Bagnat M, Poss KD. Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration. Development 143: 232–243, 2016. doi: 10.1242/dev.130534. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Carvalho R, de Sonneville J, Stockhammer OW, Savage ND, Veneman WJ, Ottenhoff TH, Dirks RP, Meijer AH, Spaink HP. A high-throughput screen for tuberculosis progression. PLoS One 6: e16779, 2011. doi: 10.1371/journal.pone.0016779. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39: e82, 2011. doi: 10.1093/nar/gkr218. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Chen JN, Haffter P, Odenthal J, Vogelsang E, Brand M, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Nüsslein-Volhard C. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123: 293–302, 1996. [PubMed] [Google Scholar]

45. Chernyavskaya Y, Ebert AM, Milligan E, Garrity DM. Voltage-gated calcium channel CACNB2 (β2.1) protein is required in the heart for control of cell proliferation and heart tube integrity. Dev Dyn 241: 648–662, 2012. doi: 10.1002/dvdy.23746. [PubMed] [CrossRef] [Google Scholar]

46. Chi NC, Bussen M, Brand-Arzamendi K, Ding C, Olgin JE, Shaw RM, Martin GR, Stainier DY. Cardiac conduction is required to preserve cardiac chamber morphology. Proc Natl Acad Sci USA 107: 14662–14667, 2010. doi: 10.1073/pnas.0909432107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Chi NC, Shaw RM, Jungblut B, Huisken J, Ferrer T, Arnaout R, Scott I, Beis D, Xiao T, Baier H, Jan LY, Tristani-Firouzi M, Stainier DY. Genetic and physiologic dissection of the vertebrate cardiac conduction system. PLoS Biol 6: e109, 2008. doi: 10.1371/journal.pbio.0060109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Childs S, Weinstein BM, Mohideen MA, Donohue S, Bonkovsky H, Fishman MC. Zebrafish dracula encodes ferrochelatase and its mutation provides a model for erythropoietic protoporphyria. Curr Biol 10: 1001–1004, 2000. doi: 10.1016/S0960-9822(00)00653-9. [PubMed] [CrossRef] [Google Scholar]

49. Cho CH, Kim SS, Jeong MJ, Lee CO, Shin HS. The Na+ -Ca2+ exchanger is essential for embryonic heart development in mice. Mol Cells 10: 712–722, 2000. [PubMed] [Google Scholar]

50. Chong CR, Chen X, Shi L, Liu JO, Sullivan DJ Jr. A clinical drug library screen identifies astemizole as an antimalarial agent. Nat Chem Biol 2: 415–416, 2006. doi: 10.1038/nchembio806. [PubMed] [CrossRef] [Google Scholar]

51. Chu CY, Chen CF, Rajendran RS, Shen CN, Chen TH, Yen CC, Chuang CK, Lin DS, Hsiao CD. Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish. PLoS One 7: e36474, 2012. doi: 10.1371/journal.pone.0036474. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Chung WS, Andersson O, Row R, Kimelman D, Stainier DY. Suppression of Alk8-mediated Bmp signaling cell-autonomously induces pancreatic beta-cells in zebrafish. Proc Natl Acad Sci USA 107: 1142–1147, 2010. doi: 10.1073/pnas.0910205107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Chung WS, Shin CH, Stainier DY. Bmp2 signaling regulates the hepatic versus pancreatic fate decision. Dev Cell 15: 738–748, 2008. doi: 10.1016/j.devcel.2008.08.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Chung WS, Stainier DY. Intra-endodermal interactions are required for pancreatic beta cell induction. Dev Cell 14: 582–593, 2008. doi: 10.1016/j.devcel.2008.02.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Clark KJ, Balciunas D, Pogoda HM, Ding Y, Westcot SE, Bedell VM, Greenwood TM, Urban MD, Skuster KJ, Petzold AM, Ni J, Nielsen AL, Patowary A, Scaria V, Sivasubbu S, Xu X, Hammerschmidt M, Ekker SC. In vivo protein trapping produces a functional expression codex of the vertebrate proteome. Nat Methods 8: 506–512, 2011. doi: 10.1038/nmeth.1606. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Clark KJ, Urban MD, Skuster KJ, Ekker SC. Transgenic zebrafish using transposable elements. Methods Cell Biol 104: 137–149, 2011. doi: 10.1016/B978-0-12-374814-0.00008-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Clay H, Coughlin SR. Mechanical vessel injury in zebrafish embryos. J Vis Exp 96: e52460, 2015. [PMC free article] [PubMed] [Google Scholar]

58. Clifton JD, Lucumi E, Myers MC, Napper A, Hama K, Farber SA, Smith AB III, Huryn DM, Diamond SL, Pack M. Identification of novel inhibitors of dietary lipid absorption using zebrafish. PLoS One 5: e12386, 2010. doi: 10.1371/journal.pone.0012386. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 332: 1519–1523, 2011. doi: 10.1126/science.1204265. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Collaborators GBD, Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S, Brauer M, Burnett R, Cercy K, Charlson FJ, Cohen AJ, Dandona L, Estep K, Ferrari AJ, Frostad JJ, Fullman N, Gething PW, Godwin WW, Griswold M, Hay SI, Kinfu Y, Kyu HH, Larson HJ, Liang X, Lim SS, Liu PY, Lopez AD, Lozano R, Marczak L, Mensah GA, Mokdad AH, Moradi-Lakeh M, Naghavi M, Neal B, Reitsma MB, Roth GA, Salomon JA, Sur PJ, Vos T, Wagner JA, Wang H, Zhao Y, Zhou M, Aasvang GM, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abdulle AM, Abera SF, Abraham B, Abu-Raddad LJ, Abyu GY, Adebiyi AO, Adedeji IA, Ademi Z, Adou AK, Adsuar JC, Agardh EE, Agarwal A, Agrawal A, Kiadaliri AA, Ajala ON, Akinyemiju TF, Al-Aly Z, Alam K, Alam NKM, Aldhahri SF, Aldridge RW, Alemu ZA, Ali R, Alkerwi A, Alla F, Allebeck P, Alsharif U, Altirkawi KA, Martin EA, Alvis-Guzman N, Amare AT, Amberbir A, Amegah AK, Amini H, Ammar W, Amrock SM, Andersen HH, Anderson BO, Antonio CAT, Anwari P, Ärnlöv J, Artaman A, Asayesh H, Asghar RJ, Assadi R, Atique S, Avokpaho EFGA, Awasthi A, Quintanilla BPA, Azzopardi P, Bacha U, Badawi A, Bahit MC, Balakrishnan K, Barac A, Barber RM, Barker-Collo SL, Bärnighausen T, Barquera S, Barregard L, Barrero LH, Basu S, Batis C, Bazargan-Hejazi S, Beardsley J, Bedi N, Beghi E, Bell B, Bell ML, Bello AK, Bennett DA, Bensenor IM, Berhane A, Bernabé E, Betsu BD, Beyene AS, Bhala N, Bhansali A, Bhatt S, Biadgilign S, Bikbov B, Bisanzio D, Bjertness E, Blore JD, Borschmann R, Boufous S, Bourne RRA, Brainin M, Brazinova A, Breitborde NJK, Brenner H, Broday DM, Brugha TS, Brunekreef B, Butt ZA, Cahill LE, Calabria B, Campos-Nonato IR, Cárdenas R, Carpenter DO, Carrero JJ, Casey DC, Castañeda-Orjuela CA, Rivas JC, Castro RE, Catalá-López F, Chang J-C, Chiang PP-C, Chibalabala M, Chimed-Ochir O, Chisumpa VH, Chitheer AA, Choi J-YJ, Christensen H, Christopher DJ, Ciobanu LG, Coates MM, Colquhoun SM, Manzano AGC, Cooper LT, Cooperrider K, Cornaby L, Cortinovis M, Crump JA, Cuevas-Nasu L, Damasceno A, Dandona R, Darby SC, Dargan PI; GBD 2015 Risk Factors Collaborators . Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388: 1659–1724, 2016. doi: 10.1016/S0140-6736(16)31679-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Collymore C, Rasmussen S, Tolwani RJ. Gavaging adult zebrafish. J Vis Exp 11: 78, 2013. doi: 10.3791/50691. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Cox AG, Hwang KL, Brown KK, Evason KJ, Beltz S, Tsomides A, O’Connor K, Galli GG, Yimlamai D, Chhangawala S, Yuan M, Lien EC, Wucherpfennig J, Nissim S, Minami A, Cohen DE, Camargo FD, Asara JM, Houvras Y, Stainier DY, Goessling W. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat Cell Biol 18: 886–896, 2016. doi: 10.1038/ncb3389. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Cox AG, Saunders DC, Kelsey PB Jr, Conway AA, Tesmenitsky Y, Marchini JF, Brown KK, Stamler JS, Colagiovanni DB, Rosenthal GJ, Croce KJ, North TE, Goessling W. S-nitrosothiol signaling regulates liver development and improves outcome following toxic liver injury. Cell Reports 6: 56–69, 2014. doi: 10.1016/j.celrep.2013.12.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Cruz-Garcia L, Schlegel A. Lxr-driven enterocyte lipid droplet formation delays transport of ingested lipids. J Lipid Res 55: 1944–1958, 2014. doi: 10.1194/jlr.M052845. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Culp P, Nüsslein-Volhard C, Hopkins N. High-frequency germ-line transmission of plasmid DNA sequences injected into fertilized zebrafish eggs. Proc Natl Acad Sci USA 88: 7953–7957, 1991. doi: 10.1073/pnas.88.18.7953. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DY. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 236: 1025–1035, 2007. doi: 10.1002/dvdy.21100. [PubMed] [CrossRef] [Google Scholar]

67. Cutler C, Multani P, Robbins D, Kim HT, Le T, Hoggatt J, Pelus LM, Desponts C, Chen YB, Rezner B, Armand P, Koreth J, Glotzbecker B, Ho VT, Alyea E, Isom M, Kao G, Armant M, Silberstein L, Hu P, Soiffer RJ, Scadden DT, Ritz J, Goessling W, North TE, Mendlein J, Ballen K, Zon LI, Antin JH, Shoemaker DD. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 122: 3074–3081, 2013. doi: 10.1182/blood-2013-05-503177. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24: 1392–1401, 2006. doi: 10.1038/nbt1259. [PubMed] [CrossRef] [Google Scholar]

69. Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 8: e1002861, 2012. doi: 10.1371/journal.pgen.1002861. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Dalgin G, Prince VE. Differential levels of Neurod establish zebrafish endocrine pancreas cell fates. Dev Biol 402: 81–97, 2015. doi: 10.1016/j.ydbio.2015.03.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Dang M, Henderson RE, Garraway LA, Zon LI. Long-term drug administration in the adult zebrafish using oral gavage for cancer preclinical studies. Dis Model Mech 9: 811–820, 2016. doi: 10.1242/dmm.024166. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Delaunay F, Thisse C, Marchand O, Laudet V, Thisse B. An inherited functional circadian clock in zebrafish embryos. Science 289: 297–300, 2000. doi: 10.1126/science.289.5477.297. [PubMed] [CrossRef] [Google Scholar]

73. Dellefave LM, Pytel P, Mewborn S, Mora B, Guris DL, Fedson S, Waggoner D, Moskowitz I, McNally EM. Sarcomere mutations in cardiomyopathy with left ventricular hypertrabeculation. Circ Cardiovasc Genet 2: 442–449, 2009. doi: 10.1161/CIRCGENETICS.109.861955. [PubMed] [CrossRef] [Google Scholar]

74. Deo RC, Musso G, Tasan M, Tang P, Poon A, Yuan C, Felix JF, Vasan RS, Beroukhim R, De Marco T, Kwok PY, MacRae CA, Roth FP. Prioritizing causal disease genes using unbiased genomic features. Genome Biol 15: 534, 2014. doi: 10.1186/s13059-014-0534-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Dina C, Bouatia-Naji N, Tucker N, Delling FN, Toomer K, Durst R, Perrocheau M, Fernandez-Friera L, Solis J, Le Tourneau T, Chen M-H, Probst V, Bosse Y, Pibarot P, Zelenika D, Lathrop M, Hercberg S, Roussel R, Benjamin EJ, Bonnet F, Lo SH, Dolmatova E, Simonet F, Lecointe S, Kyndt F, Redon R, Le Marec H, Froguel P, Ellinor PT, Vasan RS, Bruneval P, Markwald RR, Norris RA, Milan DJ, Slaugenhaupt SA, Levine RA, Schott J-J, Hagege AA, Jeunemaitre X; PROMESA investigators; MVP-France; Leducq Transatlantic MITRAL Network . Genetic association analyses highlight biological pathways underlying mitral valve prolapse. Nat Genet 47: 1206–1211, 2015. doi: 10.1038/ng.3383. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Ding Y, Liu W, Deng Y, Jomok B, Yang J, Huang W, Clark KJ, Zhong TP, Lin X, Ekker SC, Xu X. Trapping cardiac recessive mutants via expression-based insertional mutagenesis screening. Circ Res 112: 606–617, 2013. doi: 10.1161/CIRCRESAHA.112.300603. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Ding Y, Long PA, Bos JM, Shih YH, Ma X, Sundsbak RS, Chen J, Jiang Y, Zhao L, Hu X, Wang J, Shi Y, Ackerman MJ, Lin X, Ekker SC, Redfield MM, Olson TM, Xu X. A modifier screen identifies DNAJB6 as a cardiomyopathy susceptibility gene. JCI Insight 1: 14, 2016. doi: 10.1172/jci.insight.88797. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Ding Y, Sun X, Huang W, Hoage T, Redfield M, Kushwaha S, Sivasubbu S, Lin X, Ekker S, Xu X. Haploinsufficiency of target of rapamycin attenuates cardiomyopathies in adult zebrafish. Circ Res 109: 658–669, 2011. doi: 10.1161/CIRCRESAHA.111.248260. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Dong PD, Munson CA, Norton W, Crosnier C, Pan X, Gong Z, Neumann CJ, Stainier DY. Fgf10 regulates hepatopancreatic ductal system patterning and differentiation. Nat Genet 39: 397–402, 2007. doi: 10.1038/ng1961. [PubMed] [CrossRef] [Google Scholar]

80. Dong PD, Provost E, Leach SD, Stainier DY. Graded levels of Ptf1a differentially regulate endocrine and exocrine fates in the developing pancreas. Genes Dev 22: 1445–1450, 2008. doi: 10.1101/gad.1663208. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Dooley K, Zon LI. Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10: 252–256, 2000. doi: 10.1016/S0959-437X(00)00074-5. [PubMed] [CrossRef] [Google Scholar]

82. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096, 2014. doi: 10.1126/science.1258096. [PubMed] [CrossRef] [Google Scholar]

83. Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK, Bogdanove AJ. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40: W117–W122, 2012. doi: 10.1093/nar/gks608. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26: 702–708, 2008. doi: 10.1038/nbt1409. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Driever W, Fishman MC. The zebrafish: heritable disorders in transparent embryos. J Clin Invest 97: 1788–1794, 1996. doi: 10.1172/JCI118608. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123: 37–46, 1996. [PubMed] [Google Scholar]

87. Eames SC, Philipson LH, Prince VE, Kinkel MD. Blood sugar measurement in zebrafish reveals dynamics of glucose homeostasis. Zebrafish 7: 205–213, 2010. doi: 10.1089/zeb.2009.0640. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Ebert AM, Hume GL, Warren KS, Cook NP, Burns CG, Mohideen MA, Siegal G, Yelon D, Fishman MC, Garrity DM. Calcium extrusion is critical for cardiac morphogenesis and rhythm in embryonic zebrafish hearts. Proc Natl Acad Sci USA 102: 17705–17710, 2005. doi: 10.1073/pnas.0502683102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Eder J, Sedrani R, Wiesmann C. The discovery of first-in-class drugs: origins and evolution. Nat Rev Drug Discov 13: 577–587, 2014. doi: 10.1038/nrd4336. [PubMed] [CrossRef] [Google Scholar]

90. Eggert US. The why and how of phenotypic small-molecule screens. Nat Chem Biol 9: 206–209, 2013. doi: 10.1038/nchembio.1206. [PubMed] [CrossRef] [Google Scholar]

91. Eisen JS, Weston JA. Development of the neural crest in the zebrafish. Dev Biol 159: 50–59, 1993. doi: 10.1006/dbio.1993.1220. [PubMed] [CrossRef] [Google Scholar]

92. Eliceiri BP, Gonzalez AM, Baird A. Zebrafish model of the blood-brain barrier: morphological and permeability studies. Methods Mol Biol 686: 371–378, 2011. doi: 10.1007/978-1-60761-938-3_18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Elo B, Villano CM, Govorko D, White LA. Larval zebrafish as a model for glucose metabolism: expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti-diabetic compounds. J Mol Endocrinol 38: 433–440, 2007. doi: 10.1677/JME-06-0037. [PubMed] [CrossRef] [Google Scholar]

94. Falcinelli S, Picchietti S, Rodiles A, Cossignani L, Merrifield DL, Taddei AR, Maradonna F, Olivotto I, Gioacchini G, Carnevali O. Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism. Sci Rep 5: 9336, 2015. doi: 10.1038/srep09336. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Falcinelli S, Rodiles A, Unniappan S, Picchietti S, Gioacchini G, Merrifield DL, Carnevali O. Probiotic treatment reduces appetite and glucose level in the zebrafish model. Sci Rep 6: 18061, 2016. doi: 10.1038/srep18061. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Fang L, Green SR, Baek JS, Lee SH, Ellett F, Deer E, Lieschke GJ, Witztum JL, Tsimikas S, Miller YI. In vivo visualization and attenuation of oxidized lipid accumulation in hypercholesterolemic zebrafish. J Clin Invest 121: 4861–4869, 2011. doi: 10.1172/JCI57755. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Fang L, Harkewicz R, Hartvigsen K, Wiesner P, Choi SH, Almazan F, Pattison J, Deer E, Sayaphupha T, Dennis EA, Witztum JL, Tsimikas S, Miller YI. Oxidized cholesteryl esters and phospholipids in zebrafish larvae fed a high cholesterol diet: macrophage binding and activation. J Biol Chem 285: 32343–32351, 2010. doi: 10.1074/jbc.M110.137257. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Fang L, Miller YI. Emerging applications for zebrafish as a model organism to study oxidative mechanisms and their roles in inflammation and vascular accumulation of oxidized lipids. Free Radic Biol Med 53: 1411–1420, 2012. doi: 10.1016/j.freeradbiomed.2012.08.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Farber SA, Pack M, Ho SY, Johnson ID, Wagner DS, Dosch R, Mullins MC, Hendrickson HS, Hendrickson EK, Halpern ME. Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292: 1385–1388, 2001. doi: 10.1126/science.1060418. [PubMed] [CrossRef] [Google Scholar]

100. Field HA, Dong PD, Beis D, Stainier DY. Formation of the digestive system in zebrafish. II. Pancreas morphogenesis. Dev Biol 261: 197–208, 2003. doi: 10.1016/S0012-1606(03)00308-7. [PubMed] [CrossRef] [Google Scholar]

101. Flynn EJ III, Trent CM, Rawls JF. Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio). J Lipid Res 50: 1641–1652, 2009. doi: 10.1194/jlr.M800590-JLR200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Foglia MJ, Cao J, Tornini VA, Poss KD. Multicolor mapping of the cardiomyocyte proliferation dynamics that construct the atrium. Development 143: 1688–1696, 2016. doi: 10.1242/dev.136606. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Foglia MJ, Poss KD. Building and re-building the heart by cardiomyocyte proliferation. Development 143: 729–740, 2016. doi: 10.1242/dev.132910. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Foley JE, Maeder ML, Pearlberg J, Joung JK, Peterson RT, Yeh JR. Targeted mutagenesis in zebrafish using customized zinc-finger nucleases. Nat Protoc 4: 1855–1867, 2009. doi: 10.1038/nprot.2009.209. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Fraher D, Sanigorski A, Mellett NA, Meikle PJ, Sinclair AJ, Gibert Y. Zebrafish embryonic lipidomic analysis reveals that the yolk cell is metabolically active in processing lipid. Cell Reports 14: 1317–1329, 2016. doi: 10.1016/j.celrep.2016.01.016. [PubMed] [CrossRef] [Google Scholar]

106. Freedman LP, Inglese J. The increasing urgency for standards in basic biologic research. Cancer Res 74: 4024–4029, 2014. doi: 10.1158/0008-5472.CAN-14-0925. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 395: 763–770, 1998. doi: 10.1038/27376. [PubMed] [CrossRef] [Google Scholar]

108. Fuentes F, Reynolds E, Lewellis SW, Venkiteswaran G, Knaut H. A plasmid set for efficient bacterial artificial chromosome (BAC) transgenesis in zebrafish. G3 (Bethesda) 6: 829–834, 2016. doi: 10.1534/g3.115.026344. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Gaiano N, Amsterdam A, Kawakami K, Allende M, Becker T, Hopkins N. Insertional mutagenesis and rapid cloning of essential genes in zebrafish. Nature 383: 829–832, 1996. doi: 10.1038/383829a0. [PubMed] [CrossRef] [Google Scholar]

110. Gallardo VE, Varshney GK, Lee M, Bupp S, Xu L, Shinn P, Crawford NP, Inglese J, Burgess SM. Phenotype-driven chemical screening in zebrafish for compounds that inhibit collective cell migration identifies multiple pathways potentially involved in metastatic invasion. Dis Model Mech 8: 565–576, 2015. doi: 10.1242/dmm.018689. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Gamse JT, Gorelick DA. Mixtures, metabolites, and mechanisms: understanding toxicology using zebrafish. Zebrafish 13: 377–378, 2016. doi: 10.1089/zeb.2016.1370. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Geisler R, Rauch G-J, Baier H, van Bebber F, Bross L, Dekens MPS, Finger K, Fricke C, Gates MA, Geiger H, Geiger-Rudolph S, Gilmour D, Glaser S, Gnügge L, Habeck H, Hingst K, Holley S, Keenan J, Kirn A, Knaut H, Lashkari D, Maderspacher F, Martyn U, Neuhauss S, Neumann C, Nicolson T, Pelegri F, Ray R, Rick JM, Roehl H, Roeser T, Schauerte HE, Schier AF, Schönberger U, Schönthaler H-B, Schulte-Merker S, Seydler C, Talbot WS, Weiler C, Nüsslein-Volhard C, Haffter P. A radiation hybrid map of the zebrafish genome. Nat Genet 23: 86–89, 1999. doi: 10.1038/12692. [PubMed] [CrossRef] [Google Scholar]

113. Gemberling M, Karra R, Dickson AL, Poss KD. Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. eLife 4: 4, 2015. doi: 10.7554/eLife.05871. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Genge CE, Davidson WS, Tibbits GF. Adult teleost heart expresses two distinct troponin C paralogs: cardiac TnC and a novel and teleost-specific ssTnC in a chamber- and temperature-dependent manner. Physiol Genomics 45: 866–875, 2013. doi: 10.1152/physiolgenomics.00074.2013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Gibert Y, Sassi-Messai S, Fini JB, Bernard L, Zalko D, Cravedi JP, Balaguer P, Andersson-Lendahl M, Demeneix B, Laudet V. Bisphenol A induces otolith malformations during vertebrate embryogenesis. BMC Dev Biol 11: 4, 2011. doi: 10.1186/1471-213X-11-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA III, Smith HO, Venter JC. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329: 52–56, 2010. doi: 10.1126/science.1190719. [PubMed] [CrossRef] [Google Scholar]

117. Goessling W, Stainier DY. Endoderm specification and liver development. Methods Cell Biol 134: 463–483, 2016. doi: 10.1016/bs.mcb.2016.03.042. [PubMed] [CrossRef] [Google Scholar]

118. Grabher C, Joly JS, Wittbrodt J. Highly efficient zebrafish transgenesis mediated by the meganuclease I-SceI. Methods Cell Biol 77: 381–401, 2004. doi: 10.1016/S0091-679X(04)77021-1. [PubMed] [CrossRef] [Google Scholar]

119. Griffin A, Parajes S, Weger M, Zaucker A, Taylor AE, O’Neil DM, Müller F, Krone N. Ferredoxin 1b (Fdx1b) is the essential mitochondrial redox partner for cortisol biosynthesis in zebrafish. Endocrinology 157: 1122–1134, 2016. doi: 10.1210/en.2015-1480. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Grunwald DJ, Streisinger G. Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet Res 59: 103–116, 1992. doi: 10.1017/S0016672300030317. [PubMed] [CrossRef] [Google Scholar]

121. Guan J, Mishra S, Qiu Y, Shi J, Trudeau K, Las G, Liesa M, Shirihai OS, Connors LH, Seldin DC, Falk RH, MacRae CA, Liao R. Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of amyloidogenic light chain-mediated cardiotoxicity. EMBO Mol Med 6: 1493–1507, 2014. doi: 10.15252/emmm.201404190. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Gupta V, Poss KD. Clonally dominant cardiomyocytes direct heart morphogenesis. Nature 484: 479–484, 2012. doi: 10.1038/nature11045. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Gut P. Targeting mitochondrial energy metabolism with TSPO ligands. Biochem Soc Trans 43: 537–542, 2015. doi: 10.1042/BST20150019. [PubMed] [CrossRef] [Google Scholar]

124. Gut P, Baeza-Raja B, Andersson O, Hasenkamp L, Hsiao J, Hesselson D, Akassoglou K, Verdin E, Hirschey MD, Stainier DY. Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nat Chem Biol 9: 97–104, 2013. doi: 10.1038/nchembio.1136. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Gut P, Verdin E. The nexus of chromatin regulation and intermediary metabolism. Nature 502: 489–498, 2013. doi: 10.1038/nature12752. [PubMed] [CrossRef] [Google Scholar]

126. Gut P, Verdin E. Rejuvenating SIRT1 activators. Cell Metab 17: 635–637, 2013. doi: 10.1016/j.cmet.2013.04.016. [PubMed] [CrossRef] [Google Scholar]

127. Gutierrez A, Pan L, Groen RW, Baleydier F, Kentsis A, Marineau J, Grebliunaite R, Kozakewich E, Reed C, Pflumio F, Poglio S, Uzan B, Clemons P, VerPlank L, An F, Burbank J, Norton S, Tolliday N, Steen H, Weng AP, Yuan H, Bradner JE, Mitsiades C, Look AT, Aster JC. Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia. J Clin Invest 124: 644–655, 2014. doi: 10.1172/JCI65093. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly JS, Concordet JP. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17: 148, 2016. doi: 10.1186/s13059-016-1012-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nüsslein-Volhard C. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123: 1–36, 1996. [PubMed] [Google Scholar]

130. Hammerschmidt M, Pelegri F, Mullins MC, Kane DA, van Eeden FJ, Granato M, Brand M, Furutani-Seiki M, Haffter P, Heisenberg CP, Jiang YJ, Kelsh RN, Odenthal J, Warga RM, Nüsslein-Volhard C. dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development 123: 95–102, 1996. [PubMed] [Google Scholar]

131. Hao J, Williams CH, Webb ME, Hong CC. Large scale zebrafish-based in vivo small molecule screen. J Vis Exp 30: 46, 2010. doi: 10.3791/2243. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Harrison MR, Bussmann J, Huang Y, Zhao L, Osorio A, Burns CG, Burns CE, Sucov HM, Siekmann AF, Lien CL. Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish. Dev Cell 33: 442–454, 2015. doi: 10.1016/j.devcel.2015.04.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Hassel D, Dahme T, Erdmann J, Meder B, Huge A, Stoll M, Just S, Hess A, Ehlermann P, Weichenhan D, Grimmler M, Liptau H, Hetzer R, Regitz-Zagrosek V, Fischer C, Nürnberg P, Schunkert H, Katus HA, Rottbauer W. Nexilin mutations destabilize cardiac Z-disks and lead to dilated cardiomyopathy. Nat Med 15: 1281–1288, 2009. doi: 10.1038/nm.2037. [PubMed] [CrossRef] [Google Scholar]

134. Hassel D, Scholz EP, Trano N, Friedrich O, Just S, Meder B, Weiss DL, Zitron E, Marquart S, Vogel B, Karle CA, Seemann G, Fishman MC, Katus HA, Rottbauer W. Deficient zebrafish ether-à-go-go-related gene channel gating causes short-QT syndrome in zebrafish reggae mutants. Circulation 117: 866–875, 2008. doi: 10.1161/CIRCULATIONAHA.107.752220. [PubMed] [CrossRef] [Google Scholar]

135. Hein SJ, Lehmann LH, Kossack M, Juergensen L, Fuchs D, Katus HA, Hassel D. Advanced echocardiography in adult zebrafish reveals delayed recovery of heart function after myocardial cryoinjury. PLoS One 10: e0122665, 2015. doi: 10.1371/journal.pone.0122665. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Heisenberg CP, Brand M, Jiang YJ, Warga RM, Beuchle D, van Eeden FJ, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nusslein-Volhard C. Genes involved in forebrain development in the zebrafish, Danio rerio. Development 123: 191–203, 1996. [PubMed] [Google Scholar]

137. Helker CS, Schuermann A, Karpanen T, Zeuschner D, Belting HG, Affolter M, Schulte-Merker S, Herzog W. The zebrafish common cardinal veins develop by a novel mechanism: lumen ensheathment. Development 140: 2776–2786, 2013. doi: 10.1242/dev.091876. [PubMed] [CrossRef] [Google Scholar]

138. Helker CS, Schuermann A, Pollmann C, Chng SC, Kiefer F, Reversade B, Herzog W. The hormonal peptide Elabela guides angioblasts to the midline during vasculogenesis. eLife 4: e06726, 2015. doi: 10.7554/eLife.06726. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Hengartner MO, Ellis RE, Horvitz HR. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356: 494–499, 1992. doi: 10.1038/356494a0. [PubMed] [CrossRef] [Google Scholar]

140. Henke K, Bowen ME, Harris MP. Identification of mutations in zebrafish using next-generation sequencing. Curr Protoc Mol Biol 104: 13, 2013. [PubMed] [Google Scholar]

141. Herbert SP, Huisken J, Kim TN, Feldman ME, Houseman BT, Wang RA, Shokat KM, Stainier DY. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326: 294–298, 2009. doi: 10.1126/science.1178577. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Herbert SP, Stainier DY. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12: 551–564, 2011. doi: 10.1038/nrm3176. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Hesselson D, Anderson RM, Beinat M, Stainier DY. Distinct populations of quiescent and proliferative pancreatic beta-cells identified by HOTcre mediated labeling. Proc Natl Acad Sci USA 106: 14896–14901, 2009. doi: 10.1073/pnas.0906348106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Hill JH, Franzosa EA, Huttenhower C, Guillemin K. A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development. eLife 5: e20145, 2016. doi: 10.7554/eLife.20145. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

145. Hisano Y, Sakuma T, Nakade S, Ohga R, Ota S, Okamoto H, Yamamoto T, Kawahara A. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep 5: 8841, 2015. doi: 10.1038/srep08841. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

146. Ho SY, Lorent K, Pack M, Farber SA. Zebrafish fat-free is required for intestinal lipid absorption and Golgi apparatus structure. Cell Metab 3: 289–300, 2006. doi: 10.1016/j.cmet.2006.03.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Hoage T, Ding Y, Xu X. Quantifying cardiac functions in embryonic and adult zebrafish. Methods Mol Biol 843: 11–20, 2012. doi: 10.1007/978-1-61779-523-7_2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Hoage T, Sun X, Xu X. Functions of the Wnt/β-catenin pathway in an anemia-induced zebrafish model of cardiomyopathy are location dependent. Biochem Biophys Res Commun 415: 490–496, 2011. doi: 10.1016/j.bbrc.2011.10.100. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Hodatsu A, Konno T, Hayashi K, Funada A, Fujita T, Nagata Y, Fujino N, Kawashiri MA, Yamagishi M. Compound heterozygosity deteriorates phenotypes of hypertrophic cardiomyopathy with founder MYBPC3 mutation: evidence from patients and zebrafish models. Am J Physiol Heart Circ Physiol 307: H1594–H1604, 2014. doi: 10.1152/ajpheart.00637.2013. [PubMed] [CrossRef] [Google Scholar]

150. Hoegg S, Brinkmann H, Taylor JS, Meyer A. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59: 190–203, 2004. doi: 10.1007/s00239-004-2613-z. [PubMed] [CrossRef] [Google Scholar]

151. Holtzinger A, Evans T. Gata5 and Gata6 are functionally redundant in zebrafish for specification of cardiomyocytes. Dev Biol 312: 613–622, 2007. doi: 10.1016/j.ydbio.2007.09.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

152. Hoshijima K, Jurynec MJ, Grunwald DJ. Precise editing of the zebrafish genome made simple and efficient. Dev Cell 36: 654–667, 2016. doi: 10.1016/j.devcel.2016.02.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

153. Houbrechts AM, Delarue J, Gabriëls IJ, Sourbron J, Darras VM. Permanent deiodinase type 2 deficiency strongly perturbs zebrafish development, growth, and fertility. Endocrinology 157: 3668–3681, 2016. doi: 10.1210/en.2016-1077. [PubMed] [CrossRef] [Google Scholar]

154. Housden BE, Muhar M, Gemberling M, Gersbach CA, Stainier DY, Seydoux G, Mohr SE, Zuber J, Perrimon N. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat Rev Genet 18: 24–40, 2017. doi: 10.1038/nrg.2016.118. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

155. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13: 225–238, 2012. [PMC free article] [PubMed] [Google Scholar]

156. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assunção JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Ürün Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberländer M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nüsslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496: 498–503, 2013. [Erratum in Nature. 505: 248, 2014]. doi: 10.1038/nature12111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, Schmid B. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140: 4982–4987, 2013. doi: 10.1242/dev.099085. [PubMed] [CrossRef] [Google Scholar]

158. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 1262–1278, 2014. doi: 10.1016/j.cell.2014.05.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Hugo SE, Cruz-Garcia L, Karanth S, Anderson RM, Stainier DY, Schlegel A. A monocarboxylate transporter required for hepatocyte secretion of ketone bodies during fasting. Genes Dev 26: 282–293, 2012. doi: 10.1101/gad.180968.111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

160. Huisken J, Stainier DY. Selective plane illumination microscopy techniques in developmental biology. Development 136: 1963–1975, 2009. doi: 10.1242/dev.022426. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

161. Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedman M, Ho RK, Prince VE, Yang Z, Thomas MG, Coates MI. A new time-scale for ray-finned fish evolution. Proc Biol Sci 274: 489–498, 2007. doi: 10.1098/rspb.2006.3749. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

162. Hurlstone AF, Haramis AP, Wienholds E, Begthel H, Korving J, Van Eeden F, Cuppen E, Zivkovic D, Plasterk RH, Clevers H. The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature 425: 633–637, 2003. doi: 10.1038/nature02028. [PubMed] [CrossRef] [Google Scholar]

163. Imrie D, Sadler KC. White adipose tissue development in zebrafish is regulated by both developmental time and fish size. Dev Dyn 239: 3013–3023, 2010. doi: 10.1002/dvdy.22443. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

164. Irion U, Krauss J, Nüsslein-Volhard C. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 141: 4827–4830, 2014. doi: 10.1242/dev.115584. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

165. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H. Identification of a primary target of thalidomide teratogenicity. Science 327: 1345–1350, 2010. doi: 10.1126/science.1177319. [PubMed] [CrossRef] [Google Scholar]

166. Jais A, Einwallner E, Sharif O, Gossens K, Lu TT, Soyal SM, Medgyesi D, Neureiter D, Paier-Pourani J, Dalgaard K, Duvigneau JC, Lindroos-Christensen J, Zapf TC, Amann S, Saluzzo S, Jantscher F, Stiedl P, Todoric J, Martins R, Oberkofler H, Müller S, Hauser-Kronberger C, Kenner L, Casanova E, Sutterlüty-Fall H, Bilban M, Miller K, Kozlov AV, Krempler F, Knapp S, Lumeng CN, Patsch W, Wagner O, Pospisilik JA, Esterbauer H. Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell 158: 25–40, 2014. doi: 10.1016/j.cell.2014.04.043. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

167. Jao LE, Wente SR, Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 110: 13904–13909, 2013. doi: 10.1073/pnas.1308335110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Jeong JY, Kwon HB, Ahn JC, Kang D, Kwon SH, Park JA, Kim KW. Functional and developmental analysis of the blood-brain barrier in zebrafish. Brain Res Bull 75: 619–628, 2008. doi: 10.1016/j.brainresbull.2007.10.043. [PubMed] [CrossRef] [Google Scholar]

169. Jopling C, Sleep E, Raya M, Martí M, Raya A, Izpisúa Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464: 606–609, 2010. doi: 10.1038/nature08899. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

170. Junker JP, Noël ES, Guryev V, Peterson KA, Shah G, Huisken J, McMahon AP, Berezikov E, Bakkers J, van Oudenaarden A. Genome-wide RNA Tomography in the zebrafish embryo. Cell 159: 662–675, 2014. doi: 10.1016/j.cell.2014.09.038. [PubMed] [CrossRef] [Google Scholar]

171. Jurczyk A, Roy N, Bajwa R, Gut P, Lipson K, Yang C, Covassin L, Racki WJ, Rossini AA, Phillips N, Stainier DY, Greiner DL, Brehm MA, Bortell R, diIorio P. Dynamic glucoregulation and mammalian-like responses to metabolic and developmental disruption in zebrafish. Gen Comp Endocrinol 170: 334–345, 2011. doi: 10.1016/j.ygcen.2010.10.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

172. Karanth S, Tran VM, Kuberan B, Schlegel A. Polyunsaturated fatty acyl-coenzyme As are inhibitors of cholesterol biosynthesis in zebrafish and mice. Dis Model Mech 6: 1365–1377, 2013. doi: 10.1242/dmm.013425. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

173. Karanth S, Zinkhan EK, Hill JT, Yost HJ, Schlegel A. FOXN3 regulates hepatic glucose utilization. Cell Reports 15: 2745–2755, 2016. doi: 10.1016/j.celrep.2016.05.056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

174. Karra R, Knecht AK, Kikuchi K, Poss KD. Myocardial NF-κB activation is essential for zebrafish heart regeneration. Proc Natl Acad Sci USA 112: 13255–13260, 2015. doi: 10.1073/pnas.1511209112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. Kawakami K, Shima A, Kawakami N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA 97: 11403–11408, 2000. doi: 10.1073/pnas.97.21.11403. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

176. Kelsh RN, Brand M, Jiang YJ, Heisenberg CP, Lin S, Haffter P, Odenthal J, Mullins MC, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Kane DA, Warga RM, Beuchle D, Vogelsang L, Nüsslein-Volhard C. Zebrafish pigmentation mutations and the processes of neural crest development. Development 123: 369–389, 1996. [PubMed] [Google Scholar]

177. Kettleborough RN, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, Sealy I, White RJ, Herd C, Nijman IJ, Fényes F, Mehroke S, Scahill C, Gibbons R, Wali N, Carruthers S, Hall A, Yen J, Cuppen E, Stemple DL. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496: 494–497, 2013. doi: 10.1038/nature11992. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

178. Kikuchi K, Holdway JE, Major RJ, Blum N, Dahn RD, Begemann G, Poss KD. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev Cell 20: 397–404, 2011. doi: 10.1016/j.devcel.2011.01.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

179. Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464: 601–605, 2010. doi: 10.1038/nature08804. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

180. Kim SH, Speirs CK, Solnica-Krezel L, Ess KC. Zebrafish model of tuberous sclerosis complex reveals cell-autonomous and non-cell-autonomous functions of mutant tuberin. Dis Model Mech 4: 255–267, 2011. doi: 10.1242/dmm.005587. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Kim SH, Wu SY, Baek JI, Choi SY, Su Y, Flynn CR, Gamse JT, Ess KC, Hardiman G, Lipschutz JH, Abumrad NN, Rockey DC. A post-developmental genetic screen for zebrafish models of inherited liver disease. PLoS One 10: e0125980, 2015. doi: 10.1371/journal.pone.0125980. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

182. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn 203: 253–310, 1995. doi: 10.1002/aja.1002030302. [PubMed] [CrossRef] [Google Scholar]

183. Kimmel RA, Dobler S, Schmitner N, Walsen T, Freudenblum J, Meyer D. Diabetic pdx1-mutant zebrafish show conserved responses to nutrient overload and anti-glycemic treatment. Sci Rep 5: 14241, 2015. doi: 10.1038/srep14241. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

184. Kimura A, Ito-Satoh M, Hayashi T, Takahashi M, Arimura T. Molecular etiology of idiopathic cardiomyopathy in Asian populations. J Cardiol 37, Suppl 1: 139–146, 2001. [PubMed] [Google Scholar]

185. Kinkel MD, Eames SC, Philipson LH, Prince VE. Intraperitoneal injection into adult zebrafish. J Vis Exp 42: 2126, 2010. [PMC free article] [PubMed] [Google Scholar]

186. Knöll R, Postel R, Wang J, Krätzner R, Hennecke G, Vacaru AM, Vakeel P, Schubert C, Murthy K, Rana BK, Kube D, Knöll G, Schäfer K, Hayashi T, Holm T, Kimura A, Schork N, Toliat MR, Nürnberg P, Schultheiss H-P, Schaper W, Schaper J, Bos E, Den Hertog J, van Eeden FJM, Peters PJ, Hasenfuss G, Chien KR, Bakkers J. Laminin-alpha4 and integrin-linked kinase mutations cause human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells. Circulation 116: 515–525, 2007. doi: 10.1161/CIRCULATIONAHA.107.689984. [PubMed] [CrossRef] [Google Scholar]

187. Koenighofer M, Hung CY, McCauley JL, Dallman J, Back EJ, Mihalek I, Gripp KW, Sol-Church K, Rusconi P, Zhang Z, Shi GX, Andres DA, Bodamer OA. Mutations in RIT1 cause Noonan syndrome - additional functional evidence and expanding the clinical phenotype. Clin Genet 89: 359–366, 2016. doi: 10.1111/cge.12608. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

188. Kok FO, Shin M, Ni CW, Gupta A, Grosse AS, van Impel A, Kirchmaier BC, Peterson-Maduro J, Kourkoulis G, Male I, DeSantis DF, Sheppard-Tindell S, Ebarasi L, Betsholtz C, Schulte-Merker S, Wolfe SA, Lawson ND. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell 32: 97–108, 2015. doi: 10.1016/j.devcel.2014.11.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

189. Kokel D, Bryan J, Laggner C, White R, Cheung CY, Mateus R, Healey D, Kim S, Werdich AA, Haggarty SJ, Macrae CA, Shoichet B, Peterson RT. Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6: 231–237, 2010. doi: 10.1038/nchembio.307. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

190. Kokel D, Rennekamp AJ, Shah AH, Liebel U, Peterson RT. Behavioral barcoding in the cloud: embracing data-intensive digital phenotyping in neuropharmacology. Trends Biotechnol 30: 421–425, 2012. doi: 10.1016/j.tibtech.2012.05.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

191. Kondrychyn I, Garcia-Lecea M, Emelyanov A, Parinov S, Korzh V. Genome-wide analysis of Tol2 transposon reintegration in zebrafish. BMC Genomics 10: 418, 2009. doi: 10.1186/1471-2164-10-418. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

192. Kupperman E, An S, Osborne N, Waldron S, Stainier DYR. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406: 192–195, 2000. doi: 10.1038/35018092. [PubMed] [CrossRef] [Google Scholar]

193. Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, Parant JM, Yost HJ, Kanki JP, Chien CB. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236: 3088–3099, 2007. doi: 10.1002/dvdy.21343. [PubMed] [CrossRef] [Google Scholar]

194. Lackey DE, Burk DH, Ali MR, Mostaedi R, Smith WH, Park J, Scherer PE, Seay SA, McCoin CS, Bonaldo P, Adams SH. Contributions of adipose tissue architectural and tensile properties toward defining healthy and unhealthy obesity. Am J Physiol Endocrinol Metab 306: E233–E246, 2014. doi: 10.1152/ajpendo.00476.2013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

195. Laggner C, Kokel D, Setola V, Tolia A, Lin H, Irwin JJ, Keiser MJ, Cheung CY, Minor DL Jr, Roth BL, Peterson RT, Shoichet BK. Chemical informatics and target identification in a zebrafish phenotypic screen. Nat Chem Biol 8: 144–146, 2011. doi: 10.1038/nchembio.732. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

196. Lai YC, Chang WT, Lin KY, Liau I. Optical assessment of the cardiac rhythm of contracting cardiomyocytes in vitro and a pulsating heart in vivo for pharmacological screening. Biomed Opt Express 5: 1616–1625, 2014. doi: 10.1364/BOE.5.001616. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Langenbacher AD, Dong Y, Shu X, Choi J, Nicoll DA, Goldhaber JI, Philipson KD, Chen JN. Mutation in sodium-calcium exchanger 1 (NCX1) causes cardiac fibrillation in zebrafish. Proc Natl Acad Sci USA 102: 17699–17704, 2005. doi: 10.1073/pnas.0502679102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

198. Langheinrich U, Vacun G, Wagner T. Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia. Toxicol Appl Pharmacol 193: 370–382, 2003. doi: 10.1016/j.taap.2003.07.012. [PubMed] [CrossRef] [Google Scholar]

199. Lauer M. A Look at Trends in NIH’s Model Organism Research. Bethesda, MD: NIH Extramural Nexus, 2016. [Google Scholar]

200. Law SH, Sargent TD. The serine-threonine protein kinase PAK4 is dispensable in zebrafish: identification of a morpholino-generated pseudophenotype. PLoS One 9: e100268, 2014. doi: 10.1371/journal.pone.0100268. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

201. Lawson ND. Reverse genetics in zebrafish: mutants, morphants, and moving forward. Trends Cell Biol 26: 77–79, 2016. doi: 10.1016/j.tcb.2015.11.005. [PubMed] [CrossRef] [Google Scholar]

202. Lawson ND, Weinstein BM. Arteries and veins: making a difference with zebrafish. Nat Rev Genet 3: 674–682, 2002. doi: 10.1038/nrg888. [PubMed] [CrossRef] [Google Scholar]

203. Lazic S, Scott IC. Mef2cb regulates late myocardial cell addition from a second heart field-like population of progenitors in zebrafish. Dev Biol 354: 123–133, 2011. doi: 10.1016/j.ydbio.2011.03.028. [PubMed] [CrossRef] [Google Scholar]

204. Lee MT, Bonneau AR, Takacs CM, Bazzini AA, DiVito KR, Fleming ES, Giraldez AJ. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503: 360–364, 2013. doi: 10.1038/nature12632. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

205. Leibold S, Hammerschmidt M. Long-term hyperphagia and caloric restriction caused by low- or high-density husbandry have differential effects on zebrafish postembryonic development, somatic growth, fat accumulation and reproduction. PLoS One 10: e0120776, 2015. doi: 10.1371/journal.pone.0120776. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

206. Lemieux GA, Keiser MJ, Sassano MF, Laggner C, Mayer F, Bainton RJ, Werb Z, Roth BL, Shoichet BK, Ashrafi K. In silico molecular comparisons of C. elegans and mammalian pharmacology identify distinct targets that regulate feeding. PLoS Biol 11: e1001712, 2013. doi: 10.1371/journal.pbio.1001712. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

207. Leshchiner I, Alexa K, Kelsey P, Adzhubei I, Austin-Tse CA, Cooney JD, Anderson H, King MJ, Stottmann RW, Garnaas MK, Ha S, Drummond IA, Paw BH, North TE, Beier DR, Goessling W, Sunyaev SR. Mutation mapping and identification by whole-genome sequencing. Genome Res 22: 1541–1548, 2012. doi: 10.1101/gr.135541.111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

208. Li J, Casteels T, Frogne T, Ingvorsen C, Honoré C, Courtney M, Huber KV, Schmitner N, Kimmel RA, Romanov RA, Sturtzel C, Lardeau CH, Klughammer J, Farlik M, Sdelci S, Vieira A, Avolio F, Briand F, Baburin I, Májek P, Pauler FM, Penz T, Stukalov A, Gridling M, Parapatics K, Barbieux C, Berishvili E, Spittler A, Colinge J, Bennett KL, Hering S, Sulpice T, Bock C, Distel M, Harkany T, Meyer D, Superti-Furga G, Collombat P, Hecksher-Sørensen J, Kubicek S. Artemisinins target GABAA receptor signaling and impair α cell identity. Cell 168: 86–100.e15, 2017. doi: 10.1016/j.cell.2016.11.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

209. Li M, Page-McCaw P, Chen W. FGF1 mediates overnutrition-induced compensatory β-cell differentiation. Diabetes 65: 96–109, 2016. doi: 10.2337/db15-0085. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

210. Li MA, Pettitt SJ, Eckert S, Ning Z, Rice S, Cadiñanos J, Yusa K, Conte N, Bradley A. The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites. Mol Cell Biol 33: 1317–1330, 2013. doi: 10.1128/MCB.00670-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

211. Li P, Lahvic JL, Binder V, Pugach EK, Riley EB, Tamplin OJ, Panigrahy D, Bowman TV, Barrett FG, Heffner GC, McKinney-Freeman S, Schlaeger TM, Daley GQ, Zeldin DC, Zon LI. Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment. Nature 523: 468–471, 2015. doi: 10.1038/nature14569. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

212. Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8: 353–367, 2007. doi: 10.1038/nrg2091. [PubMed] [CrossRef] [Google Scholar]

213. Lim JS, Mietus-Snyder M, Valente A, Schwarz JM, Lustig RH. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 7: 251–264, 2010. doi: 10.1038/nrgastro.2010.41. [PubMed] [CrossRef] [Google Scholar]

214. Lim S, Wang Y, Yu X, Huang Y, Featherstone MS, Sampath K. A simple strategy for heritable chromosomal deletions in zebrafish via the combinatorial action of targeting nucleases. Genome Biol 14: R69, 2013. doi: 10.1186/gb-2013-14-7-r69. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

215. Lin S, Gaiano N, Culp P, Burns JC, Friedmann T, Yee JK, Hopkins N. Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science 265: 666–669, 1994. doi: 10.1126/science.8036514. [PubMed] [CrossRef] [Google Scholar]

216. Little AG, Seebacher F. Thyroid hormone regulates cardiac performance during cold acclimation in zebrafish (Danio rerio). J Exp Biol 217: 718–725, 2014. doi: 10.1242/jeb.096602. [PubMed] [CrossRef] [Google Scholar]

217. Liu C, Gates KP, Fang L, Amar MJ, Schneider DA, Geng H, Huang W, Kim J, Pattison J, Zhang J, Witztum JL, Remaley AT, Dong PD, Miller YI. Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia. Dis Model Mech 8: 989–998, 2015. doi: 10.1242/dmm.019836. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

218. Liu J, Bressan M, Hassel D, Huisken J, Staudt D, Kikuchi K, Poss KD, Mikawa T, Stainier DY. A dual role for ErbB2 signaling in cardiac trabeculation. Development 137: 3867–3875, 2010. doi: 10.1242/dev.053736. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

219. Liu Y, Asnani A, Zou L, Bentley VL, Yu M, Wang Y, Dellaire G, Sarkar KS, Dai M, Chen HH, Sosnovik DE, Shin JT, Haber DA, Berman JN, Chao W, Peterson RT. Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Sci Transl Med 6: 266ra170, 2014. doi: 10.1126/scitranslmed.3010189. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

220. Long L, Guo H, Yao D, Xiong K, Li Y, Liu P, Zhu Z, Liu D. Regulation of transcriptionally active genes via the catalytically inactive Cas9 in C. elegans and D. rerio. Cell Res 25: 638–641, 2015. doi: 10.1038/cr.2015.35. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

221. Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 10: 686–690, 2013. doi: 10.1038/nrgastro.2013.171. [PubMed] [CrossRef] [Google Scholar]

222. Lorent K, Gong W, Koo KA, Waisbourd-Zinman O, Karjoo S, Zhao X, Sealy I, Kettleborough RN, Stemple DL, Windsor PA, Whittaker SJ, Porter JR, Wells RG, Pack M. Identification of a plant isoflavonoid that causes biliary atresia. Sci Transl Med 7: 286ra67, 2015. doi: 10.1126/scitranslmed.aaa1652. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

223. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Karthikeyan G, Kassebaum N, Keren A, Khoo JP, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL, Mabweijano J, MacIntyre MF, Mallinger L, March L, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGrath J, Mensah GA, Merriman TR, Michaud C, Miller M, Miller TR, Mock C, Mocumbi AO, Mokdad AA, Moran A, Mulholland K, Nair MN, Naldi L, Narayan KM, Nasseri K, Norman P, O’Donnell M, Omer SB, Ortblad K, Osborne R, Ozgediz D, Pahari B, Pandian JD, Rivero AP, Padilla RP, Perez-Ruiz F, Perico N, Phillips D, Pierce K, Pope CA III, Porrini E, Pourmalek F, Raju M, Ranganathan D, Rehm JT, Rein DB, Remuzzi G, Rivara FP, Roberts T, De León FR, Rosenfeld LC, Rushton L, Sacco RL, Salomon JA, Sampson U, Sanman E, Schwebel DC, Segui-Gomez M, Shepard DS, Singh D, Singleton J, Sliwa K, Smith E, Steer A, Taylor JA, Thomas B, Tleyjeh IM, Towbin JA, Truelsen T, Undurraga EA, Venketasubramanian N, Vijayakumar L, Vos T, Wagner GR, Wang M, Wang W, Watt K, Weinstock MA, Weintraub R, Wilkinson JD, Woolf AD, Wulf S, Yeh PH, Yip P, Zabetian A, Zheng ZJ, Lopez AD, Murray CJL, AlMazroa MA, Memish ZA. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380: 2095–2128, 2012. [Erratum in Lancet 381: 628, 2013]. doi: 10.1016/S0140-6736(12)61728-0. [PubMed] [CrossRef] [Google Scholar]

224. Lucas ME, Müller F, Rüdiger R, Henion PD, Rohrer H. The bHLH transcription factor hand2 is essential for noradrenergic differentiation of sympathetic neurons. Development 133: 4015–4024, 2006. doi: 10.1242/dev.02574. [PubMed] [CrossRef] [Google Scholar]

225. Lundby A, Rossin EJ, Steffensen AB, Acha MR, Newton-Cheh C, Pfeufer A, Lynch SN, Olesen S-P, Brunak S, Ellinor PT, Jukema JW, Trompet S, Ford I, Macfarlane PW, Krijthe BP, Hofman A, Uitterlinden AG, Stricker BH, Nathoe HM, Spiering W, Daly MJ, Asselbergs FW, van der Harst P, Milan DJ, de Bakker PIW, Lage K, Olsen JV; QT Interval International GWAS Consortium (QT-IGC) . Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics. Nat Methods 11: 868–874, 2014. doi: 10.1038/nmeth.2997. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

226. MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. Nat Rev Drug Discov 14: 721–731, 2015. doi: 10.1038/nrd4627. [PubMed] [CrossRef] [Google Scholar]

227. Maddison LA, Chen W. Nutrient excess stimulates β-cell neogenesis in zebrafish. Diabetes 61: 2517–2524, 2012. doi: 10.2337/db11-1841. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

228. Maddison LA, Joest KE, Kammeyer RM, Chen W. Skeletal muscle insulin resistance in zebrafish induces alterations in β-cell number and glucose tolerance in an age- and diet-dependent manner. Am J Physiol Endocrinol Metab 308: E662–E669, 2015. doi: 10.1152/ajpendo.00441.2014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

229. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Müller-Lerch F, Fu F, Pearlberg J, Göbel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31: 294–301, 2008. doi: 10.1016/j.molcel.2008.06.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

230. Mahmoud AI, O’Meara CC, Gemberling M, Zhao L, Bryant DM, Zheng R, Gannon JB, Cai L, Choi WY, Egnaczyk GF, Burns CE, Burns CG, MacRae CA, Poss KD, Lee RT. Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev Cell 34: 387–399, 2015. doi: 10.1016/j.devcel.2015.06.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

231. Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods 10: 957–963, 2013. doi: 10.1038/nmeth.2649. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

232. Manfroid I, Delporte F, Baudhuin A, Motte P, Neumann CJ, Voz ML, Martial JA, Peers B. Reciprocal endoderm-mesoderm interactions mediated by fgf24 and fgf10 govern pancreas development. Development 134: 4011–4021, 2007. doi: 10.1242/dev.007823. [PubMed] [CrossRef] [Google Scholar]

233. Manfroid I, Ghaye A, Naye F, Detry N, Palm S, Pan L, Ma TP, Huang W, Rovira M, Martial JA, Parsons MJ, Moens CB, Voz ML, Peers B. Zebrafish sox9b is crucial for hepatopancreatic duct development and pancreatic endocrine cell regeneration. Dev Biol 366: 268–278, 2012. doi: 10.1016/j.ydbio.2012.04.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

234. Marín-Juez R, Jong-Raadsen S, Yang S, Spaink HP. Hyperinsulinemia induces insulin resistance and immune suppression via Ptpn6/Shp1 in zebrafish. J Endocrinol 222: 229–241, 2014. doi: 10.1530/JOE-14-0178. [PubMed] [CrossRef] [Google Scholar]

235. Martin ED, Moriarty MA, Byrnes L, Grealy M. Plakoglobin has both structural and signalling roles in zebrafish development. Dev Biol 327: 83–96, 2009. doi: 10.1016/j.ydbio.2008.11.036. [PubMed] [CrossRef] [Google Scholar]

236. Masca NG, Hensor EM, Cornelius VR, Buffa FM, Marriott HM, Eales JM, Messenger MP, Anderson AE, Boot C, Bunce C, Goldin RD, Harris J, Hinchliffe RF, Junaid H, Kingston S, Martin-Ruiz C, Nelson CP, Peacock J, Seed PT, Shinkins B, Staples KJ, Toombs J, Wright AK, Teare MD. RIPOSTE: a framework for improving the design and analysis of laboratory-based research. eLife 4: 05519, 2015. doi: 10.7554/eLife.05519. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

237. Matrone G, Maqsood S, Taylor J, Mullins JJ, Tucker CS, Denvir MA. Targeted laser ablation of the zebrafish larval heart induces models of heart block, valvular regurgitation, and outflow tract obstruction. Zebrafish 11: 536–541, 2014. doi: 10.1089/zeb.2014.1027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

238. Matthews RP, Lorent K, Mañoral-Mobias R, Huang Y, Gong W, Murray IV, Blair IA, Pack M. TNFalpha-dependent hepatic steatosis and liver degeneration caused by mutation of zebrafish S-adenosylhomocysteine hydrolase. Development 136: 865–875, 2009. doi: 10.1242/dev.027565. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

239. McCarroll MN, Gendelev L, Keiser MJ, Kokel D. Leveraging large-scale behavioral profiling in zebrafish to explore neuroactive polypharmacology. ACS Chem Biol 11: 842–849, 2016. doi: 10.1021/acschembio.5b00800. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

240. McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF, Shendure J. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353: aaf7907, 2016. doi: 10.1126/science.aaf7907. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

241. McMenamin SK, Minchin JE, Gordon TN, Rawls JF, Parichy DM. Dwarfism and increased adiposity in the gh1 mutant zebrafish vizzini. Endocrinology 154: 1476–1487, 2013. doi: 10.1210/en.2012-1734. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

242. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26: 695–701, 2008. doi: 10.1038/nbt1398. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

243. Michel M, Page-McCaw PS, Chen W, Cone RD. Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish. Proc Natl Acad Sci USA 113: 3084–3089, 2016. doi: 10.1073/pnas.1513212113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

244. Mickoleit M, Schmid B, Weber M, Fahrbach FO, Hombach S, Reischauer S, Huisken J. High-resolution reconstruction of the beating zebrafish heart. Nat Methods 11: 919–922, 2014. doi: 10.1038/nmeth.3037. [PubMed] [CrossRef] [Google Scholar]

245. Milan DJ, Giokas AC, Serluca FC, Peterson RT, MacRae CA. Notch1b and neuregulin are required for specification of central cardiac conduction tissue. Development 133: 1125–1132, 2006. doi: 10.1242/dev.02279. [PubMed] [CrossRef] [Google Scholar]

246. Milan DJ, Jones IL, Ellinor PT, MacRae CA. In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. Am J Physiol Heart Circ Physiol 291: H269–H273, 2006. doi: 10.1152/ajpheart.00960.2005. [PubMed] [CrossRef] [Google Scholar]

247. Milan DJ, Kim AM, Winterfield JR, Jones IL, Pfeufer A, Sanna S, Arking DE, Amsterdam AH, Sabeh KM, Mably JD, Rosenbaum DS, Peterson RT, Chakravarti A, Kääb S, Roden DM, MacRae CA. Drug-sensitized zebrafish screen identifies multiple genes, including GINS3, as regulators of myocardial repolarization. Circulation 120: 553–559, 2009. doi: 10.1161/CIRCULATIONAHA.108.821082. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

248. Milan DJ, Peterson TA, Ruskin JN, Peterson RT, MacRae CA. Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 107: 1355–1358, 2003. doi: 10.1161/01.CIR.0000061912.88753.87. [PubMed] [CrossRef] [Google Scholar]

249. Miller AC, Obholzer ND, Shah AN, Megason SG, Moens CB. RNA-seq-based mapping and candidate identification of mutations from forward genetic screens. Genome Res 23: 679–686, 2013. doi: 10.1101/gr.147322.112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

250. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29: 143–148, 2011. doi: 10.1038/nbt.1755. [PubMed] [CrossRef] [Google Scholar]

251. Minchin JE, Dahlman I, Harvey CJ, Mejhert N, Singh MK, Epstein JA, Arner P, Torres-Vázquez J, Rawls JF. Plexin D1 determines body fat distribution by regulating the type V collagen microenvironment in visceral adipose tissue. Proc Natl Acad Sci USA 112: 4363–4368, 2015. doi: 10.1073/pnas.1416412112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

252. Minchin JE, Rawls JF. In vivo analysis of white adipose tissue in zebrafish. Methods Cell Biol 105: 63–86, 2011. doi: 10.1016/B978-0-12-381320-6.00003-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

253. Mishra S, Guan J, Plovie E, Seldin DC, Connors LH, Merlini G, Falk RH, MacRae CA, Liao R. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish. Am J Physiol Heart Circ Physiol 305: H95–H103, 2013. doi: 10.1152/ajpheart.00186.2013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

254. Moens CB, Donn TM, Wolf-Saxon ER, Ma TP. Reverse genetics in zebrafish by TILLING. Brief Funct Genomics Proteomics 7: 454–459, 2008. doi: 10.1093/bfgp/eln046. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

255. Moller DE. Metabolic disease drug discovery- “hitting the target” is easier said than done. Cell Metab 15: 19–24, 2012. doi: 10.1016/j.cmet.2011.10.012. [PubMed] [CrossRef] [Google Scholar]

256. Morgan TH. Random segregation versus coupling in mendelian inheritance. Science 34: 384, 1911. doi: 10.1126/science.34.873.384. [PubMed] [CrossRef] [Google Scholar]

257. Moriarty MA, Ryan R, Lalor P, Dockery P, Byrnes L, Grealy M. Loss of plakophilin 2 disrupts heart development in zebrafish. Int J Dev Biol 56: 711–718, 2012. doi: 10.1387/ijdb.113390mm. [PubMed] [CrossRef] [Google Scholar]

258. Morrison MA, Zimmerman MW, Look AT, Stewart RA. Studying the peripheral sympathetic nervous system and neuroblastoma in zebrafish. Methods Cell Biol 134: 97–138, 2016. doi: 10.1016/bs.mcb.2015.12.003. [PubMed] [CrossRef] [Google Scholar]

260. Moss JB, Koustubhan P, Greenman M, Parsons MJ, Walter I, Moss LG. Regeneration of the pancreas in adult zebrafish. Diabetes 58: 1844–1851, 2009. doi: 10.2337/db08-0628. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

261. Moss LG, Caplan TV, Moss JB. Imaging beta cell regeneration and interactions with islet vasculature in transparent adult zebrafish. Zebrafish 10: 249–257, 2013. doi: 10.1089/zeb.2012.0813. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

262. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basáñez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabé E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fèvre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gonzalez-Medina D, Gosselin R, Grainger R, Grant B, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Laden F, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Levinson D, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mock C, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KM, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O’Donnell M, O’Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA III, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leòn FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJ, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiebe N, Wiersma ST, Wilkinson JD, Williams HC, Williams SR, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AK, Zheng ZJ, Zonies D, Lopez AD, AlMazroa MA, Memish ZA. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380: 2197–2223, 2012. [Erratum in Lancet 381: 628, 2013]. doi: 10.1016/S0140-6736(12)61689-4. [PubMed] [CrossRef] [Google Scholar]

263. Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39: 9283–9293, 2011. doi: 10.1093/nar/gkr597. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

264. Muto A, Calof AL, Lander AD, Schilling TF. Multifactorial origins of heart and gut defects in nipbl-deficient zebrafish, a model of Cornelia de Lange Syndrome. PLoS Biol 9: e1001181, 2011. doi: 10.1371/journal.pbio.1001181. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

265. Nagayoshi S, Hayashi E, Abe G, Osato N, Asakawa K, Urasaki A, Horikawa K, Ikeo K, Takeda H, Kawakami K. Insertional mutagenesis by the Tol2 transposon-mediated enhancer trap approach generated mutations in two developmental genes: tcf7 and synembryn-like. Development 135: 159–169, 2008. doi: 10.1242/dev.009050. [PubMed] [CrossRef] [Google Scholar]

266. Nair G, Hebrok M. Islet formation in mice and men: lessons for the generation of functional insulin-producing β-cells from human pluripotent stem cells. Curr Opin Genet Dev 32: 171–180, 2015. doi: 10.1016/j.gde.2015.03.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

267. Nasevicius A, Ekker SC. Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26: 216–220, 2000. doi: 10.1038/79951. [PubMed] [CrossRef] [Google Scholar]

268. Nath AK, Ryu JH, Jin YN, Roberts LD, Dejam A, Gerszten RE, Peterson RT. PTPMT1 inhibition lowers glucose through succinate dehydrogenase phosphorylation. Cell Reports 10: 694–701, 2015. doi: 10.1016/j.celrep.2015.01.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

269. Naye F, Voz ML, Detry N, Hammerschmidt M, Peers B, Manfroid I. Essential roles of zebrafish bmp2a, fgf10, and fgf24 in the specification of the ventral pancreas. Mol Biol Cell 23: 945–954, 2012. doi: 10.1091/mbc.E11-08-0664. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

270. Neuhauss SC, Solnica-Krezel L, Schier AF, Zwartkruis F, Stemple DL, Malicki J, Abdelilah S, Stainier DY, Driever W. Mutations affecting craniofacial development in zebrafish. Development 123: 357–367, 1996. [PubMed] [Google Scholar]

271. Nicolson T, Rüsch A, Friedrich RW, Granato M, Ruppersberg JP, Nüsslein-Volhard C. Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants. Neuron 20: 271–283, 1998. doi: 10.1016/S0896-6273(00)80455-9. [PubMed] [CrossRef] [Google Scholar]

272. Ninov N, Borius M, Stainier DY. Different levels of Notch signaling regulate quiescence, renewal and differentiation in pancreatic endocrine progenitors. Development 139: 1557–1567, 2012. doi: 10.1242/dev.076000. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

273. Ninov N, Hesselson D, Gut P, Zhou A, Fidelin K, Stainier DY. Metabolic regulation of cellular plasticity in the pancreas. Curr Biol 23: 1242–1250, 2013. doi: 10.1016/j.cub.2013.05.037. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

274. Nolte H, Hölper S, Housley MP, Islam S, Piller T, Konzer A, Stainier DY, Braun T, Krüger M. Dynamics of zebrafish fin regeneration using a pulsed SILAC approach. Proteomics 15: 739–751, 2015. doi: 10.1002/pmic.201400316. [PubMed] [CrossRef] [Google Scholar]

275. North TE, Babu IR, Vedder LM, Lord AM, Wishnok JS, Tannenbaum SR, Zon LI, Goessling W. PGE2-regulated wnt signaling and N-acetylcysteine are synergistically hepatoprotective in zebrafish acetaminophen injury. Proc Natl Acad Sci USA 107: 17315–17320, 2010. doi: 10.1073/pnas.1008209107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

276. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang IH, Grosser T, Fitzgerald GA, Daley GQ, Orkin SH, Zon LI. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447: 1007–1011, 2007. doi: 10.1038/nature05883. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

277. Novodvorsky P, Watson O, Gray C, Wilkinson RN, Reeve S, Smythe C, Beniston R, Plant K, Maguire R, M K Rothman A, Elworthy S, van Eeden FJ, Chico TJ, Rothman MKA, Elworthy S, van Eeden FJM, Chico TJA. klf2ash317 mutant zebrafish do not recapitulate morpholino-induced vascular and haematopoietic phenotypes. PLoS One 10: e0141611, 2015. doi: 10.1371/journal.pone.0141611. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

278. Nurse P. Cyclin dependent kinases and cell cycle control (nobel lecture). ChemBioChem 3: 596–603, 2002. doi: 10.1002/1439-7633(20020703)3:7<596::AID-CBIC596>3.0.CO;2-U. [PubMed] [CrossRef] [Google Scholar]

279. Nussbaum JM, Liu LJ, Hasan SA, Schaub M, McClendon A, Stainier DY, Sakaguchi TF. Homeostatic generation of reactive oxygen species protects the zebrafish liver from steatosis. Hepatology 58: 1326–1338, 2013. doi: 10.1002/hep.26551. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

280. Nüsslein-Volhard C, Kluding H, Jürgens G. Genes affecting the segmental subdivision of the Drosophila embryo. Cold Spring Harb Symp Quant Biol 50: 145–154, 1985. doi: 10.1101/SQB.1985.050.01.020. [PubMed] [CrossRef] [Google Scholar]

281. Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature 287: 795–801, 1980. doi: 10.1038/287795a0. [PubMed] [CrossRef] [Google Scholar]

282. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O’Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44: D733–D745, 2016. doi: 10.1093/nar/gkv1189. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

283. Ober EA, Field HA, Stainier DY. From endoderm formation to liver and pancreas development in zebrafish. Mech Dev 120: 5–18, 2003. doi: 10.1016/S0925-4773(02)00327-1. [PubMed] [CrossRef] [Google Scholar]

284. Ocorr K, Fink M, Cammarato A, Bernstein S, Bodmer R. Semi-automated optical heartbeat analysis of small hearts. J Vis Exp 31: 1435, 2009. doi: 10.3791/1435. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

285. Oka T, Nishimura Y, Zang L, Hirano M, Shimada Y, Wang Z, Umemoto N, Kuroyanagi J, Nishimura N, Tanaka T. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol 10: 21, 2010. doi: 10.1186/1472-6793-10-21. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

286. Olsen AS, Sarras MP Jr, Leontovich A, Intine RV. Heritable transmission of diabetic metabolic memory in zebrafish correlates with DNA hypomethylation and aberrant gene expression. Diabetes 61: 485–491, 2012. doi: 10.2337/db11-0588. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

287. Opitz R, Maquet E, Huisken J, Antonica F, Trubiroha A, Pottier G, Janssens V, Costagliola S. Transgenic zebrafish illuminate the dynamics of thyroid morphogenesis and its relationship to cardiovascular development. Dev Biol 372: 203–216, 2012. doi: 10.1016/j.ydbio.2012.09.011. [PubMed] [CrossRef] [Google Scholar]

288. Ordas A, Raterink RJ, Cunningham F, Jansen HJ, Wiweger MI, Jong-Raadsen S, Bos S, Bates RH, Barros D, Meijer AH, Vreeken RJ, Ballell-Pages L, Dirks RP, Hankemeier T, Spaink HP. Testing tuberculosis drug efficacy in a zebrafish high-throughput translational medicine screen. Antimicrob Agents Chemother 59: 753–762, 2015. doi: 10.1128/AAC.03588-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

289. Orr N, Arnaout R, Gula LJ, Spears DA, Leong-Sit P, Li Q, Tarhuni W, Reischauer S, Chauhan VS, Borkovich M, Uppal S, Adler A, Coughlin SR, Stainier DY, Gollob MH. A mutation in the atrial-specific myosin light chain gene (MYL4) causes familial atrial fibrillation. Nat Commun 7: 11303, 2016. doi: 10.1038/ncomms11303. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

290. Otsuna H, Hutcheson DA, Duncan RN, McPherson AD, Scoresby AN, Gaynes BF, Tong Z, Fujimoto E, Kwan KM, Chien CB, Dorsky RI. High-resolution analysis of central nervous system expression patterns in zebrafish Gal4 enhancer-trap lines. Dev Dyn 244: 785–796, 2015. doi: 10.1002/dvdy.24260. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

291. Paardekooper Overman J, Yi JS, Bonetti M, Soulsby M, Preisinger C, Stokes MP, Hui L, Silva JC, Overvoorde J, Giansanti P, Heck AJ, Kontaridis MI, den Hertog J, Bennett AM. PZR coordinates Shp2 Noonan and LEOPARD syndrome signaling in zebrafish and mice. Mol Cell Biol 34: 2874–2889, 2014. doi: 10.1128/MCB.00135-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

292. Pack M, Solnica-Krezel L, Malicki J, Neuhauss SC, Schier AF, Stemple DL, Driever W, Fishman MC. Mutations affecting development of zebrafish digestive organs. Development 123: 321–328, 1996. [PubMed] [Google Scholar]

293. Pardo-Martin C, Chang TY, Koo BK, Gilleland CL, Wasserman SC, Yanik MF. High-throughput in vivo vertebrate screening. Nat Methods 7: 634–636, 2010. doi: 10.1038/nmeth.1481. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

294. Parman T, Wiley MJ, Wells PG. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat Med 5: 582–585, 1999. doi: 10.1038/8466. [PubMed] [CrossRef] [Google Scholar]

295. Parrie LE, Renfrew EM, Wal AV, Mueller RL, Garrity DM. Zebrafish tbx5 paralogs demonstrate independent essential requirements in cardiac and pectoral fin development. Dev Dyn 242: 485–502, 2013. doi: 10.1002/dvdy.23953. [PubMed] [CrossRef] [Google Scholar]

296. Parsons MJ, Pisharath H, Yusuff S, Moore JC, Siekmann AF, Lawson N, Leach SD. Notch-responsive cells initiate the secondary transition in larval zebrafish pancreas. Mech Dev 126: 898–912, 2009. doi: 10.1016/j.mod.2009.07.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

297. Patton EE, Zon LI. The art and design of genetic screens: zebrafish. Nat Rev Genet 2: 956–966, 2001. doi: 10.1038/35103567. [PubMed] [CrossRef] [Google Scholar]

298. Peal DS, Mills RW, Lynch SN, Mosley JM, Lim E, Ellinor PT, January CT, Peterson RT, Milan DJ. Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation 123: 23–30, 2011. doi: 10.1161/CIRCULATIONAHA.110.003731. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

299. Pérez-Victoria FJ, Schindler C, Magadán JG, Mardones GA, Delevoye C, Romao M, Raposo G, Bonifacino JS. Ang2/fat-free is a conserved subunit of the Golgi-associated retrograde protein complex. Mol Biol Cell 21: 3386–3395, 2010. doi: 10.1091/mbc.E10-05-0392. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

300. Perles Z, Moon S, Ta-Shma A, Yaacov B, Francescatto L, Edvardson S, Rein AJ, Elpeleg O, Katsanis N. A human laterality disorder caused by a homozygous deleterious mutation in MMP21. J Med Genet 52: 840–847, 2015. doi: 10.1136/jmedgenet-2015-103336. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

301. Pestel J, Ramadass R, Gauvrit S, Helker C, Herzog W, Stainier DY. Real-time 3D visualization of cellular rearrangements during cardiac valve formation. Development 143: 2217–2227, 2016. doi: 10.1242/dev.133272. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

302. Peterson RT, Shaw SY, Peterson TA, Milan DJ, Zhong TP, Schreiber SL, MacRae CA, Fishman MC. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol 22: 595–599, 2004. doi: 10.1038/nbt963. [PubMed] [CrossRef] [Google Scholar]

303. Pham LN, Kanther M, Semova I, Rawls JF. Methods for generating and colonizing gnotobiotic zebrafish. Nat Protoc 3: 1862–1875, 2008. doi: 10.1038/nprot.2008.186. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

304. Pisharath H, Rhee JM, Swanson MA, Leach SD, Parsons MJ. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev 124: 218–229, 2007. doi: 10.1016/j.mod.2006.11.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

305. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science 331: 1078–1080, 2011. doi: 10.1126/science.1200708. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

306. Poss KD. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet 11: 710–722, 2010. doi: 10.1038/nrg2879. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

307. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science 298: 2188–2190, 2002. doi: 10.1126/science.1077857. [PubMed] [CrossRef] [Google Scholar]

308. Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L, Dequiedt F, Haendeler J, Mione M, Dejana E, Alt FW, Zeiher AM, Dimmeler S. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 21: 2644–2658, 2007. doi: 10.1101/gad.435107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

309. Pulak R. Tools for automating the imaging of zebrafish larvae. Methods 96: 118–126, 2016. doi: 10.1016/j.ymeth.2015.11.021. [PubMed] [CrossRef] [Google Scholar]

310. Quach HNB, Tao S, Vrljicak P, Joshi A, Ruan H, Sukumaran R, Varshney GK, LaFave MC, Burgess SM, Winkler C, Emelyanov A, Parinov S, Sampath K; Ds Screen Team . A multifunctional mutagenesis system for analysis of gene function in zebrafish. G3 (Bethesda) 5: 1283–1299, 2015. doi: 10.1534/g3.114.015842. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

311. Ramspacher C, Steed E, Boselli F, Ferreira R, Faggianelli N, Roth S, Spiegelhalter C, Messaddeq N, Trinh L, Liebling M, Chacko N, Tessadori F, Bakkers J, Laporte J, Hnia K, Vermot J. Developmental alterations in heart biomechanics and skeletal muscle function in desmin mutants suggest an early pathological root for desminopathies. Cell Reports 11: 1564–1576, 2015. doi: 10.1016/j.celrep.2015.05.010. [PubMed] [CrossRef] [Google Scholar]

312. Ransom DG, Haffter P, Odenthal J, Brownlie A, Vogelsang E, Kelsh RN, Brand M, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Mullins MC, Nüsslein-Volhard C. Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 123: 311–319, 1996. [PubMed] [Google Scholar]

313. Rawls JF, Mahowald MA, Ley RE, Gordon JI. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127: 423–433, 2006. doi: 10.1016/j.cell.2006.08.043. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

314. Rawls JF, Samuel BS, Gordon JI. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci USA 101: 4596–4601, 2004. doi: 10.1073/pnas.0400706101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

315. Razzaque MA, Nishizawa T, Komoike Y, Yagi H, Furutani M, Amo R, Kamisago M, Momma K, Katayama H, Nakagawa M, Fujiwara Y, Matsushima M, Mizuno K, Tokuyama M, Hirota H, Muneuchi J, Higashinakagawa T, Matsuoka R. Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nat Genet 39: 1013–1017, 2007. doi: 10.1038/ng2078. [PubMed] [CrossRef] [Google Scholar]

316. Reinstein E, Orvin K, Tayeb-Fligelman E, Stiebel-Kalish H, Tzur S, Pimienta AL, Bazak L, Bengal T, Cohen L, Gaton DD, Bormans C, Landau M, Kornowski R, Shohat M, Behar DM. Mutations in TAX1BP3 cause dilated cardiomyopathy with septo-optic dysplasia. Hum Mutat 36: 439–442, 2015. doi: 10.1002/humu.22759. [PubMed] [CrossRef] [Google Scholar]

317. Reischauer S, Arnaout R, Ramadass R, Stainier DY. Actin binding GFP allows 4D in vivo imaging of myofilament dynamics in the zebrafish heart and the identification of Erbb2 signaling as a remodeling factor of myofibril architecture. Circ Res 115: 845–856, 2014. doi: 10.1161/CIRCRESAHA.115.304356. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

318. Reischauer S, Stone OA, Villasenor A, Chi N, Jin SW, Martin M, Lee MT, Fukuda N, Marass M, Witty A, Fiddes I, Kuo T, Chung WS, Salek S, Lerrigo R, Alsiö J, Luo S, Tworus D, Augustine SM, Mucenieks S, Nystedt B, Giraldez AJ, Schroth GP, Andersson O, Stainier DY. Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification. Nature 535: 294–298, 2016. doi: 10.1038/nature18614. [PubMed] [CrossRef] [Google Scholar]

319. Rennekamp AJ, Peterson RT. 15 years of zebrafish chemical screening. Curr Opin Chem Biol 24: 58–70, 2015. doi: 10.1016/j.cbpa.2014.10.025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

320. Reynolds AL, Alvarez Y, Sasore T, Waghorne N, Butler CT, Kilty C, Smith AJ, McVicar C, Wong VH, Galvin O, Merrigan S, Osman J, Grebnev G, Sjölander A, Stitt AW, Kennedy BN. Phenotype-based discovery of 2-[(E)-2-(quinolin-2-yl)vinyl]phenol as a novel regulator of ocular angiogenesis. J Biol Chem 291: 7242–7255, 2016. doi: 10.1074/jbc.M115.710665. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

321. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30: 460–465, 2012. doi: 10.1038/nbt.2170. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

322. Roder K, Werdich AA, Li W, Liu M, Kim TY, Organ-Darling LE, Moshal KS, Hwang JM, Lu Y, Choi BR, MacRae CA, Koren G. RING finger protein RNF207, a novel regulator of cardiac excitation. J Biol Chem 289: 33730–33740, 2014. doi: 10.1074/jbc.M114.592295. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

323. Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, Maguire KK, Brunson C, Mastey N, Liu L, Tsai CR, Goodell MA, Rando TA. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature 510: 393–396, 2014. doi: 10.1038/nature13255. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

324. Rohner N, Perathoner S, Frohnhöfer HG, Harris MP. Enhancing the efficiency of N-ethyl-N-nitrosourea-induced mutagenesis in the zebrafish. Zebrafish 8: 119–123, 2011. doi: 10.1089/zeb.2011.0703. [PubMed] [CrossRef] [Google Scholar]

325. Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, Krüger M, Stainier DY. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524: 230–233, 2015. doi: 10.1038/nature14580. [PubMed] [CrossRef] [Google Scholar]

326. Rottbauer W, Just S, Wessels G, Trano N, Most P, Katus HA, Fishman MC. VEGF-PLCgamma1 pathway controls cardiac contractility in the embryonic heart. Genes Dev 19: 1624–1634, 2005. doi: 10.1101/gad.1319405. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

327. Rovira M, Huang W, Yusuff S, Shim JS, Ferrante AA, Liu JO, Parsons MJ. Chemical screen identifies FDA-approved drugs and target pathways that induce precocious pancreatic endocrine differentiation. Proc Natl Acad Sci USA 108: 19264–19269, 2011. doi: 10.1073/pnas.1113081108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

328. Rubin N, Harrison MR, Krainock M, Kim R, Lien CL. Recent advancements in understanding endogenous heart regeneration-insights from adult zebrafish and neonatal mice. Semin Cell Dev Biol 58: 34–40, 2016. doi: 10.1016/j.semcdb.2016.04.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

329. Ryan S, Willer J, Marjoram L, Bagwell J, Mankiewicz J, Leshchiner I, Goessling W, Bagnat M, Katsanis N. Rapid identification of kidney cyst mutations by whole exome sequencing in zebrafish. Development 140: 4445–4451, 2013. doi: 10.1242/dev.101170. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

330. Sadler KC, Amsterdam A, Soroka C, Boyer J, Hopkins N. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development 132: 3561–3572, 2005. doi: 10.1242/dev.01918. [PubMed] [CrossRef] [Google Scholar]

331. Sakaguchi TF, Sadler KC, Crosnier C, Stainier DY. Endothelial signals modulate hepatocyte apicobasal polarization in zebrafish. Curr Biol 18: 1565–1571, 2008. doi: 10.1016/j.cub.2008.08.065. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

332. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8: 67–69, 2011. doi: 10.1038/nmeth.1542. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

333. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32: 347–355, 2014. doi: 10.1038/nbt.2842. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

334. Sapp V, Gaffney L, EauClaire SF, Matthews RP. Fructose leads to hepatic steatosis in zebrafish that is reversed by mechanistic target of rapamycin (mTOR) inhibition. Hepatology 60: 1581–1592, 2014. doi: 10.1002/hep.27284. [PubMed] [CrossRef] [Google Scholar]

335. Sarras MP Jr, Mason S, McAllister G, Intine RV. Inhibition of poly-ADP ribose polymerase enzyme activity prevents hyperglycemia-induced impairment of angiogenesis during wound healing. Wound Repair Regen 22: 666–670, 2014. doi: 10.1111/wrr.12216. [PubMed] [CrossRef] [Google Scholar]

336. Schaub M, Nussbaum J, Verkade H, Ober EA, Stainier DY, Sakaguchi TF. Mutation of zebrafish Snapc4 is associated with loss of the intrahepatic biliary network. Dev Biol 363: 128–137, 2012. doi: 10.1016/j.ydbio.2011.12.025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

337. Scheid LM, Mosqueira M, Hein S, Kossack M, Juergensen L, Mueller M, Meder B, Fink RH, Katus HA, Hassel D. Essential light chain S195 phosphorylation is required for cardiac adaptation under physical stress. Cardiovasc Res 111: 44–55, 2016. doi: 10.1093/cvr/cvw066. [PubMed] [CrossRef] [Google Scholar]

338. Schier AF, Neuhauss SC, Harvey M, Malicki J, Solnica-Krezel L, Stainier DY, Zwartkruis F, Abdelilah S, Stemple DL, Rangini Z, Yang H, Driever W. Mutations affecting the development of the embryonic zebrafish brain. Development 123: 165–178, 1996. [PubMed] [Google Scholar]

339. Schlegel A. Studying lipoprotein trafficking in zebrafish, the case of chylomicron retention disease. J Mol Med (Berl) 93: 115–118, 2015. doi: 10.1007/s00109-014-1248-9. [PubMed] [CrossRef] [Google Scholar]

340. Schlegel A. Studying non-alcoholic fatty liver disease with zebrafish: a confluence of optics, genetics, and physiology. Cell Mol Life Sci 69: 3953–3961, 2012. doi: 10.1007/s00018-012-1037-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

341. Schlegel A, Gut P. Metabolic insights from zebrafish genetics, physiology, and chemical biology. Cell Mol Life Sci 72: 2249–2260, 2015. doi: 10.1007/s00018-014-1816-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

342. Schlegel A, Stainier DY. Lessons from “lower” organisms: what worms, flies, and zebrafish can teach us about human energy metabolism. PLoS Genet 3: e199, 2007. doi: 10.1371/journal.pgen.0030199. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

343. Schlegel A, Stainier DY. Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae. Biochemistry 45: 15179–15187, 2006. doi: 10.1021/bi0619268. [PubMed] [CrossRef] [Google Scholar]

344. Schoenebeck JJ, Yelon D. Illuminating cardiac development: Advances in imaging add new dimensions to the utility of zebrafish genetics. Semin Cell Dev Biol 18: 27–35, 2007. doi: 10.1016/j.semcdb.2006.12.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

345. Schönberger J, Wang L, Shin JT, Kim SD, Depreux FF, Zhu H, Zon L, Pizard A, Kim JB, Macrae CA, Mungall AJ, Seidman JG, Seidman CE. Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat Genet 37: 418–422, 2005. doi: 10.1038/ng1527. [PubMed] [CrossRef] [Google Scholar]

346. Schulte-Merker S, Stainier DY. Out with the old, in with the new: reassessing morpholino knockdowns in light of genome editing technology. Development 141: 3103–3104, 2014. doi: 10.1242/dev.112003. [PubMed] [CrossRef] [Google Scholar]

347. Schulz N, Liu KC, Charbord J, Mattsson CL, Tao L, Tworus D, Andersson O. Critical role for adenosine receptor A2a in β-cell proliferation. Mol Metab 5: 1138–1146, 2016. doi: 10.1016/j.molmet.2016.09.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

348. Sciarra JB, Tyler A, Kolb A. A gelatin-based diet for oral dosing juvenile to adult zebrafish. LAS Pro 32–35, 2014. [Google Scholar]

349. Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ, Xiao T, Chi NC, Asakawa K, Kawakami K, Baier H. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods 4: 323–326, 2007. doi: 10.1038/nmeth1033. [PubMed] [CrossRef] [Google Scholar]

350. Sehnert AJ, Huq A, Weinstein BM, Walker C, Fishman M, Stainier DY. Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat Genet 31: 106–110, 2002. doi: 10.1038/ng875. [PubMed] [CrossRef] [Google Scholar]

351. Seth A, Stemple DL, Barroso I. The emerging use of zebrafish to model metabolic disease. Dis Model Mech 6: 1080–1088, 2013. doi: 10.1242/dmm.011346. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

352. Shah AN, Davey CF, Whitebirch AC, Miller AC, Moens CB. Rapid reverse genetic screening using CRISPR in zebrafish. Nat Methods 12: 535–540, 2015. doi: 10.1038/nmeth.3360. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

353. Sharma P, Abbasi C, Lazic S, Teng AC, Wang D, Dubois N, Ignatchenko V, Wong V, Liu J, Araki T, Tiburcy M, Ackerley C, Zimmermann WH, Hamilton R, Sun Y, Liu PP, Keller G, Stagljar I, Scott IC, Kislinger T, Gramolini AO. Evolutionarily conserved intercalated disc protein Tmem65 regulates cardiac conduction and connexin 43 function. Nat Commun 6: 8391, 2015. doi: 10.1038/ncomms9391. [PubMed] [CrossRef] [Google Scholar]

354. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X, Skarnes WC. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11: 399–402, 2014. doi: 10.1038/nmeth.2857. [PubMed] [CrossRef] [Google Scholar]

355. Shih YH, Zhang Y, Ding Y, Ross CA, Li H, Olson TM, Xu X. Cardiac transcriptome and dilated cardiomyopathy genes in zebrafish. Circ Cardiovasc Genet 8: 261–269, 2015. doi: 10.1161/CIRCGENETICS.114.000702. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

356. Shima A, Himmelbauer H, Mitani H, Furutani-Seiki M, Wittbrodt J, Schartl M. Fish genomes flying. Symposium on Medaka Genomics. EMBO Rep 4: 121–125, 2003. doi: 10.1038/sj.embor.embor743. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

357. Shimizu H, Schredelseker J, Huang J, Lu K, Naghdi S, Lu F, Franklin S, Fiji HD, Wang K, Zhu H, Tian C, Lin B, Nakano H, Ehrlich A, Nakai J, Stieg AZ, Gimzewski JK, Nakano A, Goldhaber JI, Vondriska TM, Hajnóczky G, Kwon O, Chen JN. Mitochondrial Ca(2+) uptake by the voltage-dependent anion channel 2 regulates cardiac rhythmicity. eLife 4: 04801, 2015. doi: 10.7554/eLife.04801. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

358. Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R, Strawbridge RJ, Pers TH, Fischer K, Justice AE, Workalemahu T, Wu JM, Buchkovich ML, Heard-Costa NL, Roman TS, Drong AW, Song C, Gustafsson S, Day FR, Esko T, Fall T, Kutalik Z, Luan J, Randall JC, Scherag A, Vedantam S, Wood AR, Chen J, Fehrmann R, Karjalainen J, Kahali B, Liu CT, Schmidt EM, Absher D, Amin N, Anderson D, Beekman M, Bragg-Gresham JL, Buyske S, Demirkan A, Ehret GB, Feitosa MF, Goel A, Jackson AU, Johnson T, Kleber ME, Kristiansson K, Mangino M, Mateo Leach I, Medina-Gomez C, Palmer CD, Pasko D, Pechlivanis S, Peters MJ, Prokopenko I, Stančáková A, Ju Sung Y, Tanaka T, Teumer A, Van Vliet-Ostaptchouk JV, Yengo L, Zhang W, Albrecht E, Ärnlöv J, Arscott GM, Bandinelli S, Barrett A, Bellis C, Bennett AJ, Berne C, Blüher M, Böhringer S, Bonnet F, Böttcher Y, Bruinenberg M, Carba DB, Caspersen IH, Clarke R, Daw EW, Deelen J, Deelman E, Delgado G, Doney AS, Eklund N, Erdos MR, Estrada K, Eury E, Friedrich N, Garcia ME, Giedraitis V, Gigante B, Go AS, Golay A, Grallert H, Grammer TB, Gräßler J, Grewal J, Groves CJ, Haller T, Hallmans G, Hartman CA, Hassinen M, Hayward C, Heikkilä K, Herzig KH, Helmer Q, Hillege HL, Holmen O, Hunt SC, Isaacs A, Ittermann T, James AL, Johansson I, Juliusdottir T, Kalafati IP, Kinnunen L, Koenig W, Kooner IK, Kratzer W, Lamina C, Leander K, Lee NR, Lichtner P, Lind L, Lindström J, Lobbens S, Lorentzon M, Mach F, Magnusson PK, Mahajan A, McArdle WL, Menni C, Merger S, Mihailov E, Milani L, Mills R, Moayyeri A, Monda KL, Mooijaart SP, Mühleisen TW, Mulas A, Müller G, Müller-Nurasyid M, Nagaraja R, Nalls MA, Narisu N, Glorioso N, Nolte IM, Olden M, Rayner NW, Renstrom F, Ried JS, Robertson NR, Rose LM, Sanna S, Scharnagl H, Scholtens S, Sennblad B, Seufferlein T, Sitlani CM, Vernon Smith A, Stirrups K, Stringham HM, Sundström J, Swertz MA, Swift AJ, Syvänen AC, Tayo BO, Thorand B, Thorleifsson G, Tomaschitz A, Troffa C, van Oort FV, Verweij N, Vonk JM, Waite LL, Wennauer R, Wilsgaard T, Wojczynski MK, Wong A, Zhang Q, Hua Zhao J, Brennan EP, Choi M, Eriksson P, Folkersen L, Franco-Cereceda A, Gharavi AG, Hedman AK, Hivert MF, Huang J, Kanoni S, Karpe F, Keildson S, Kiryluk K, Liang L, Lifton RP, Ma B, McKnight AJ, McPherson R, Metspalu A, Min JL, Moffatt MF, Montgomery GW, Murabito JM, Nicholson G, Nyholt DR, Olsson C, Perry JR, Reinmaa E, Salem RM, Sandholm N, Schadt EE, Scott RA, Stolk L, Vallejo EE, Westra HJ, Zondervan KT, Amouyel P, Arveiler D, Bakker SJL, Beilby J, Bergman RN, Blangero J, Brown MJ, Burnier M, Campbell H, Chakravarti A, Chines PS, Claudi-Boehm S, Collins FS, Crawford DC, Danesh J, de Faire U, de Geus EJC, Dörr M, Erbel R, Eriksson JG, Farrall M, Ferrannini E, Ferrières J, Forouhi NG, Forrester T, Franco OH, Gansevoort RT, Gieger C, Gudnason V, Haiman CA, Harris TB, Hattersley AT, Heliövaara M, Hicks AA, Hingorani AD, Hoffmann W, Hofman A, Homuth G, Humphries SE, Hyppönen E, Illig T, Jarvelin M-R, Johansen B, Jousilahti P, Jula AM, Kaprio J, Kee F, Keinanen-Kiukaanniemi SM, Kooner JS, Kooperberg C, Kovacs P, Kraja AT, Kumari M, Kuulasmaa K, Kuusisto J, Lakka TA, Langenberg C, Le Marchand L, Lehtimäki T, Lyssenko V, Männistö S, Marette A, Matise TC, McKenzie CA, McKnight B, Musk AW, Möhlenkamp S, Morris AD, Nelis M, Ohlsson C, Oldehinkel AJ, Ong KK, Palmer LJ, Penninx BW, Peters A, Pramstaller PP, Raitakari OT, Rankinen T, Rao DC, Rice TK, Ridker PM, Ritchie MD, Rudan I, Salomaa V, Samani NJ, Saramies J, Sarzynski MA, Schwarz PEH, Shuldiner AR, Staessen JA, Steinthorsdottir V, Stolk RP, Strauch K, Tönjes A, Tremblay A, Tremoli E, Vohl M-C, Völker U, Vollenweider P, Wilson JF, Witteman JC, Adair LS, Bochud M, Boehm BO, Bornstein SR, Bouchard C, Cauchi S, Caulfield MJ, Chambers JC, Chasman DI, Cooper RS, Dedoussis G, Ferrucci L, Froguel P, Grabe H-J, Hamsten A, Hui J, Hveem K, Jöckel K-H, Kivimaki M, Kuh D, Laakso M, Liu Y, März W, Munroe PB, Njølstad I, Oostra BA, Palmer CNA, Pedersen NL, Perola M, Pérusse L, Peters U, Power C, Quertermous T, Rauramaa R, Rivadeneira F, Saaristo TE, Saleheen D, Sinisalo J, Slagboom PE, Snieder H, Spector TD, Thorsteinsdottir U, Stumvoll M, Tuomilehto J, Uitterlinden AG, Uusitupa M, van der Harst P, Veronesi G, Walker M, Wareham NJ, Watkins H, Wichmann H-E, Abecasis GR, Assimes TL, Berndt SI, Boehnke M, Borecki IB, Deloukas P, Franke L, Frayling TM, Groop LC, Hunter DJ, Kaplan RC, O’Connell JR, Qi L, Schlessinger D, Strachan DP, Stefansson K, van Duijn CM, Willer CJ, Visscher PM, Yang J, Hirschhorn JN, Zillikens MC, McCarthy MI, Speliotes EK, North KE, Fox CS, Barroso I, Franks PW, Ingelsson E, Heid IM, Loos RJF, Cupples LA, Morris AP, Lindgren CM, Mohlke KL; ADIPOGen Consortium; CARDIOGRAMplusC4D Consortium; CKDGen Consortium; GEFOS Consortium; GENIE Consortium; GLGCICBPInternational Endogene Consortium; LifeLines Cohort Study; MAGIC Investigators; MuTHER Consortium; PAGE Consortium; ReproGen Consortium . New genetic loci link adipose and insulin biology to body fat distribution. Nature 518: 187–196, 2015. doi: 10.1038/nature14132. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

359. Siccardi AJ III, Garris HW, Jones WT, Moseley DB, D’Abramo LR, Watts SA. Growth and survival of zebrafish (Danio rerio) fed different commercial and laboratory diets. Zebrafish 6: 275–280, 2009. doi: 10.1089/zeb.2008.0553. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

360. Siekmann AF, Lawson ND. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445: 781–784, 2007. doi: 10.1038/nature05577. [PubMed] [CrossRef] [Google Scholar]

361. Siu BL, Niimura H, Osborne JA, Fatkin D, MacRae C, Solomon S, Benson DW, Seidman JG, Seidman CE. Familial dilated cardiomyopathy locus maps to chromosome 2q31. Circulation 99: 1022–1026, 1999. doi: 10.1161/01.CIR.99.8.1022. [PubMed] [CrossRef] [Google Scholar]

362. Sivasubbu S, Balciunas D, Davidson AE, Pickart MA, Hermanson SB, Wangensteen KJ, Wolbrink DC, Ekker SC. Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development. Mech Dev 123: 513–529, 2006. doi: 10.1016/j.mod.2006.06.002. [PubMed] [CrossRef] [Google Scholar]

363. Smith DL Jr, Barry RJ, Powell ML, Nagy TR, D’Abramo LR, Watts SA. Dietary protein source influence on body size and composition in growing zebrafish. Zebrafish 10: 439–446, 2013. doi: 10.1089/zeb.2012.0864. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

364. Sogah VM, Serluca FC, Fishman MC, Yelon DL, Macrae CA, Mably JD. Distinct troponin C isoform requirements in cardiac and skeletal muscle. Dev Dyn 239: 3115–3123, 2010. doi: 10.1002/dvdy.22445. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

365. Solnica-Krezel L, Stemple DL, Mountcastle-Shah E, Rangini Z, Neuhauss SC, Malicki J, Schier AF, Stainier DY, Zwartkruis F, Abdelilah S, Driever W. Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish. Development 123: 67–80, 1996. [PubMed] [Google Scholar]

366. Song J, Ampatzis K, Björnfors ER, El Manira A. Motor neurons control locomotor circuit function retrogradely via gap junctions. Nature 529: 399–402, 2016. doi: 10.1038/nature16497. [PubMed] [CrossRef] [Google Scholar]

367. Song Y, Cone RD. Creation of a genetic model of obesity in a teleost. FASEB J 21: 2042–2049, 2007. doi: 10.1096/fj.06-7503com. [PubMed] [CrossRef] [Google Scholar]

368. Soroldoni D, Hogan BM, Oates AC. Simple and efficient transgenesis with meganuclease constructs in zebrafish. Methods Mol Biol 546: 117–130, 2009. doi: 10.1007/978-1-60327-977-2_8. [PubMed] [CrossRef] [Google Scholar]

369. Stafford D, Prince VE. Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr Biol 12: 1215–1220, 2002. doi: 10.1016/S0960-9822(02)00929-6. [PubMed] [CrossRef] [Google Scholar]

370. Stainier DY, Fouquet B, Chen JN, Warren KS, Weinstein BM, Meiler SE, Mohideen MA, Neuhauss SC, Solnica-Krezel L, Schier AF, Zwartkruis F, Stemple DL, Malicki J, Driever W, Fishman MC. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123: 285–292, 1996. [PubMed] [Google Scholar]

371. Stainier DY, Kontarakis Z, Rossi A. Making sense of anti-sense data. Dev Cell 32: 7–8, 2015. doi: 10.1016/j.devcel.2014.12.012. [PubMed] [CrossRef] [Google Scholar]

372. Stainier DY, Weinstein BM, Detrich HW III, Zon LI, Fishman MC. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121: 3141–3150, 1995. [PubMed] [Google Scholar]

373. Staudt D, Stainier D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu Rev Genet 46: 397–418, 2012. doi: 10.1146/annurev-genet-110711-155646. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

374. Staudt DW, Liu J, Thorn KS, Stuurman N, Liebling M, Stainier DY. High-resolution imaging of cardiomyocyte behavior reveals two distinct steps in ventricular trabeculation. Development 141: 585–593, 2014. doi: 10.1242/dev.098632. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

375. Stemple DL. TILLING--a high-throughput harvest for functional genomics. Nat Rev Genet 5: 145–150, 2004. doi: 10.1038/nrg1273. [PubMed] [CrossRef] [Google Scholar]

376. Stoletov K, Fang L, Choi SH, Hartvigsen K, Hansen LF, Hall C, Pattison J, Juliano J, Miller ER, Almazan F, Crosier P, Witztum JL, Klemke RL, Miller YI. Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circ Res 104: 952–960, 2009. doi: 10.1161/CIRCRESAHA.108.189803. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

377. Stoyek MR, Croll RP, Smith FM. Intrinsic and extrinsic innervation of the heart in zebrafish (Danio rerio). J Comp Neurol 523: 1683–1700, 2015. doi: 10.1002/cne.23764. [PubMed] [CrossRef] [Google Scholar]

378. Stoyek MR, Quinn TA, Croll RP, Smith FM. Zebrafish heart as a model to study the integrative autonomic control of pacemaker function. Am J Physiol Heart Circ Physiol 311: H676–H688, 2016. doi: 10.1152/ajpheart.00330.2016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

379. Streisinger G, Walker C, Dower N, Knauber D, Singer F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291: 293–296, 1981. doi: 10.1038/291293a0. [PubMed] [CrossRef] [Google Scholar]

380. Stuart GW, McMurray JV, Westerfield M. Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103: 403–412, 1988. [PubMed] [Google Scholar]

381. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest 121: 2094–2101, 2011. doi: 10.1172/JCI45887. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

382. Sun L, Lien CL, Xu X, Shung KK. In vivo cardiac imaging of adult zebrafish using high frequency ultrasound (45-75 MHz). Ultrasound Med Biol 34: 31–39, 2008. doi: 10.1016/j.ultrasmedbio.2007.07.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

383. Sun P, Zhang Y, Yu F, Parks E, Lyman A, Wu Q, Ai L, Hu CH, Zhou Q, Shung K, Lien CL, Hsiai TK. Micro-electrocardiograms to study post-ventricular amputation of zebrafish heart. Ann Biomed Eng 37: 890–901, 2009. doi: 10.1007/s10439-009-9668-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

384. Sun X, Hoage T, Bai P, Ding Y, Chen Z, Zhang R, Huang W, Jahangir A, Paw B, Li YG, Xu X. Cardiac hypertrophy involves both myocyte hypertrophy and hyperplasia in anemic zebrafish. PLoS One 4: e6596, 2009. doi: 10.1371/journal.pone.0006596. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

385. Sun Z, Hopkins N. vhnf1, the MODY5 and familial GCKD-associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain. Genes Dev 15: 3217–3229, 2001. doi: 10.1101/gad946701. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

386. Sung YH, Jin Y, Kim S, Lee HW. Generation of knockout mice using engineered nucleases. Methods 69: 85–93, 2014. doi: 10.1016/j.ymeth.2014.02.009. [PubMed] [CrossRef] [Google Scholar]

387. Suster ML, Kikuta H, Urasaki A, Asakawa K, Kawakami K. Transgenesis in zebrafish with the tol2 transposon system. Methods Mol Biol 561: 41–63, 2009. doi: 10.1007/978-1-60327-019-9_3. [PubMed] [CrossRef] [Google Scholar]

388. Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov 10: 507–519, 2011. doi: 10.1038/nrd3480. [PubMed] [CrossRef] [Google Scholar]

389. Tahara N, Brush M, Kawakami Y. Cell migration during heart regeneration in zebrafish. Dev Dyn 245: 774–787, 2016. doi: 10.1002/dvdy.24411. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

390. Talbot JC, Amacher SL. A streamlined CRISPR pipeline to reliably generate zebrafish frameshifting alleles. Zebrafish 11: 583–585, 2014. doi: 10.1089/zeb.2014.1047. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

391. Taylor MR, Hurley JB, Van Epps HA, Brockerhoff SE. A zebrafish model for pyruvate dehydrogenase deficiency: rescue of neurological dysfunction and embryonic lethality using a ketogenic diet. Proc Natl Acad Sci USA 101: 4584–4589, 2004. doi: 10.1073/pnas.0307074101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

392. Thermes V, Grabher C, Ristoratore F, Bourrat F, Choulika A, Wittbrodt J, Joly JS. I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 118: 91–98, 2002. doi: 10.1016/S0925-4773(02)00218-6. [PubMed] [CrossRef] [Google Scholar]

393. Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg H-P, Seidman JG, Seidman CE. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77: 701–712, 1994. doi: 10.1016/0092-8674(94)90054-X. [PubMed] [CrossRef] [Google Scholar]

394. Towbin JA, McQuinn TC. Gridlock: a model for coarctation of the aorta? Nat Med 1: 1141–1142, 1995. doi: 10.1038/nm1195-1141. [PubMed] [CrossRef] [Google Scholar]

395. Trinh A, Hochgreb T, Graham M, Wu D, Ruf-Zamojski F, Jayasena CS, Saxena A, Hawk R, Gonzalez-Serricchio A, Dixson A, Chow E, Gonzales C, Leung HY, Solomon I, Bronner-Fraser M, Megason SG, Fraser SE. A versatile gene trap to visualize and interrogate the function of the vertebrate proteome. Genes Dev 25: 2306–2320, 2011. doi: 10.1101/gad.174037.111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

396. Tsai CT, Hsieh CS, Chang SN, Chuang EY, Ueng KC, Tsai CF, Lin TH, Wu CK, Lee JK, Lin LY, Wang YC, Yu CC, Lai LP, Tseng CD, Hwang JJ, Chiang FT, Lin JL. Genome-wide screening identifies a KCNIP1 copy number variant as a genetic predictor for atrial fibrillation. Nat Commun 7: 10190, 2016. doi: 10.1038/ncomms10190. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

397. Tsuji N, Ninov N, Delawary M, Osman S, Roh AS, Gut P, Stainier DY. Whole organism high content screening identifies stimulators of pancreatic beta-cell proliferation. PLoS One 9: e104112, 2014. doi: 10.1371/journal.pone.0104112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

398. Turola E, Petta S, Vanni E, Milosa F, Valenti L, Critelli R, Miele L, Maccio L, Calvaruso V, Fracanzani AL, Bianchini M, Raos N, Bugianesi E, Mercorella S, Di Giovanni M, Craxì A, Fargion S, Grieco A, Cammà C, Cotelli F, Villa E. Ovarian senescence increases liver fibrosis in humans and zebrafish with steatosis. Dis Model Mech 8: 1037–1046, 2015. doi: 10.1242/dmm.019950. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

399. Urasaki A, Morvan G, Kawakami K. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174: 639–649, 2006. doi: 10.1534/genetics.106.060244. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

400. Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22: 5792–5812, 2003. doi: 10.1038/sj.onc.1206679. [PubMed] [CrossRef] [Google Scholar]

401. van der Velden YU, Wang L, Zevenhoven J, van Rooijen E, van Lohuizen M, Giles RH, Clevers H, Haramis AP. The serine-threonine kinase LKB1 is essential for survival under energetic stress in zebrafish. Proc Natl Acad Sci USA 108: 4358–4363, 2011. doi: 10.1073/pnas.1010210108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

402. van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, Macleod MR. Can animal models of disease reliably inform human studies? PLoS Med 7: e1000245, 2010. doi: 10.1371/journal.pmed.1000245. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

403. Vanhollebeke B, Stone OA, Bostaille N, Cho C, Zhou Y, Maquet E, Gauquier A, Cabochette P, Fukuhara S, Mochizuki N, Nathans J, Stainier DY. Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. eLife 4: 06489, 2015. doi: 10.7554/eLife.06489. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

404. Varshney GK, Pei W, LaFave MC, Idol J, Xu L, Gallardo V, Carrington B, Bishop K, Jones M, Li M, Harper U, Huang SC, Prakash A, Chen W, Sood R, Ledin J, Burgess SM. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res 25: 1030–1042, 2015. doi: 10.1101/gr.186379.114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

405. Varshney GK, Sood R, Burgess SM. Understanding and editing the zebrafish genome. Adv Genet 92: 1–52, 2015. doi: 10.1016/bs.adgen.2015.09.002. [PubMed] [CrossRef] [Google Scholar]

406. Vegas AJ, Veiseh O, Gürtler M, Millman JR, Pagliuca FW, Bader AR, Doloff JC, Li J, Chen M, Olejnik K, Tam HH, Jhunjhunwala S, Langan E, Aresta-Dasilva S, Gandham S, McGarrigle JJ, Bochenek MA, Hollister-Lock J, Oberholzer J, Greiner DL, Weir GC, Melton DA, Langer R, Anderson DG. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med 22: 306–311, 2016. [Erratum in Nat Med 22: 446, 2016]. doi: 10.1038/nm.4030. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

407. Venkatachalam AB, Thisse C, Thisse B, Wright JM. Differential tissue-specific distribution of transcripts for the duplicated fatty acid-binding protein 10 (fabp10) genes in embryos, larvae and adult zebrafish (Danio rerio). FEBS J 276: 6787–6797, 2009. doi: 10.1111/j.1742-4658.2009.07393.x. [PubMed] [CrossRef] [Google Scholar]

408. Vergauwen L, Benoot D, Blust R, Knapen D. Long-term warm or cold acclimation elicits a specific transcriptional response and affects energy metabolism in zebrafish. Comp Biochem Physiol A Mol Integr Physiol 157: 149–157, 2010. doi: 10.1016/j.cbpa.2010.06.160. [PubMed] [CrossRef] [Google Scholar]

409. Vergauwen L, Knapen D, Hagenaars A, De Boeck G, Blust R. Assessing the impact of thermal acclimation on physiological condition in the zebrafish model. J Comp Physiol B 183: 109–121, 2013. doi: 10.1007/s00360-012-0691-6. [PubMed] [CrossRef] [Google Scholar]

410. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basáñez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabé E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fèvre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gosselin R, Grainger R, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Ma J, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KM, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O’Donnell M, O’Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA III, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leòn FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJ, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams SR, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AK, Zheng ZJ, Zonies D, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380: 2163–2196, 2012. [Erratum in Lancet. 381: 628, 2013]. doi: 10.1016/S0140-6736(12)61729-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

411. Walsh EC, Stainier DY. UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science 293: 1670–1673, 2001. doi: 10.1126/science.293.5535.1670. [PubMed] [CrossRef] [Google Scholar]

412. Wang G, Rajpurohit SK, Delaspre F, Walker SL, White DT, Ceasrine A, Kuruvilla R, Li RJ, Shim JS, Liu JO, Parsons MJ, Mumm JS. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass. eLife 4: 08261, 2015. doi: 10.7554/eLife.08261. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

412a. Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, Casey DC, Charlson FJ, Chen AZ, Coates MM, Coggeshall M, Dandona L, Dicker DJ, Erskine HE, Ferrari AJ, Fitzmaurice C, Foreman K, Forouzanfar MH, Fraser MS, Fullman N, Gething PW, Goldberg EM, Graetz N, Haagsma JA, Hay SI, Huynh C, Johnson CO, Kassebaum NJ, Kinfu Y, Kulikoff XR, Kutz M, Kyu HH, Larson HJ, Leung J, Liang X, Lim SS, Lind M, Lozano R, Marquez N, Mensah GA, Mikesell J, Mokdad AH, Mooney MD, Nguyen G, Nsoesie E, Pigott DM, Pinho C, Roth GA, Salomon JA, Sandar L, Silpakit N, Sligar A, Sorensen RJD, Stanaway J, Steiner C, Teeple S, Thomas BA, Troeger C, VanderZanden A, Vollset SE, Wanga V, Whiteford HA, Wolock T, Zoeckler L, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, Abreu DMX, Abu-Raddad LJ, Abyu GY, Achoki T, Adelekan AL, Ademi Z, Adou AK, Adsuar JC, Afanvi KA, Afshin A, Agardh EE, Agarwal A, Agrawal A, Kiadaliri AA, Ajala ON, Akanda AS, Akinyemi RO, Akinyemiju TF, Akseer N, Lami FHA, Alabed S, Al-Aly Z, Alam K, Alam NKM, Alasfoor D, Aldhahri SF, Aldridge RW, Alegretti MA, Aleman AV, Alemu ZA, Alexander LT, Alhabib S, Ali R, Alkerwi A, Alla F, Allebeck P, Al-Raddadi R, Alsharif U, Altirkawi KA, Martin EA, Alvis-Guzman N, Amare AT, Amegah AK, Ameh EA, Amini H, Ammar W, Amrock SM, Andersen HH, Anderson BO, Anderson GM, Antonio CAT, Aregay AF, Ärnlöv J, Arsenijevic VSA, Artaman A, Asayesh H, Asghar RJ, Atique S, Avokpaho EFGA, Awasthi A, Azzopardi P, Bacha U, Badawi A, Bahit MC, Balakrishnan K, Banerjee A, Barac A, Barker-Collo SL, Bärnighausen T, Barregard L, Barrero LH, Basu A, Basu S, Bayou YT, Bazargan-Hejazi S, Beardsley J, Bedi N, Beghi E, Belay HA, Bell B, Bell ML, Bello AK, Bennett DA, Bensenor IM, Berhane A, Bernabé E, Betsu BD, Beyene AS, Bhala N, Bhalla A, Biadgilign S, Bikbov B, Abdulhak AAB, Biroscak BJ, Biryukov S, Bjertness E, Blore JD, Blosser CD, Bohensky MA, Borschmann R, Bose D, Bourne RRA, Brainin M, Brayne CEG, Brazinova A, Breitborde NJK, Brenner H, Brewer JD, Brown A, Brown J, Brugha TS, Buckle GC, Butt ZA, Calabria B, Campos-Nonato IR, Campuzano JC, Carapetis JR, Cárdenas R, Carpenter DO, Carrero JJ, Castañeda-Orjuela CA, Rivas JC, Catalá-López F, Cavalleri F, Cercy K, Cerda J, Chen W, Chew A, Chiang PP-C, Chibalabala M, Chibueze CE, Chimed-Ochir O, Chisumpa VH, Choi J-YJ, Chowdhury R, Christensen H, Christopher DJ, Ciobanu LG, Cirillo M, Cohen AJ, Colistro V, Colomar M, Colquhoun SM, Cooper C, Cooper LT, Cortinovis M, Cowie BC, Crump JA, Damsere-Derry J, Danawi H, Dandona R, Daoud F, Darby SC, Dargan PI, das Neves J, Davey G, Davis AC, Davitoiu DV, de Castro EF, de Jager P, Leo DD, Degenhardt L, Dellavalle RP, Deribe K, Deribew A, Dharmaratne SD, Dhillon PK, Diaz-Torné C, Ding EL, dos Santos KPB, Dossou E, Driscoll TR, Duan L, Dubey M, Duncan BB, Ellenbogen RG, Ellingsen CL, Elyazar I, Endries AY, Ermakov SP, Eshrati B, Esteghamati A, Estep K, Faghmous IDA, Fahimi S, Faraon EJA, Farid TA, Farinha CSS, Faro A, Farvid MS, Farzadfar F, Feigin VL, Fereshtehnejad S-M, Fernandes JG, Fernandes JC, Fischer F, Fitchett JRA, Flaxman A, Foigt N, Fowkes FGR, Franca EB, Franklin RC, Friedman J, Frostad J, Fürst T, Futran ND, Gall SL, Gambashidze K, Gamkrelidze A, Ganguly P, Gankpé FG, Gebre T, Gebrehiwot TT, Gebremedhin AT, Gebru AA, Geleijnse JM, Gessner BD, Ghoshal AG, Gibney KB, Gillum RF, Gilmour S, Giref AZ, Giroud M, Gishu MD, Giussani G, Glaser E, Godwin WW, Gomez-Dantes H, Gona P, Goodridge A, Gopalani SV, Gosselin RA, Gotay CC, Goto A, Gouda HN, Greaves F, Gugnani HC, Gupta R, Gupta R, Gupta V, Gutiérrez RA, Hafezi-Nejad N, Haile D, Hailu AD, Hailu GB, Halasa YA, Hamadeh RR, Hamidi S, Hancock J, Handal AJ, Hankey GJ, Hao Y, Harb HL, Harikrishnan S, Haro JM, Havmoeller R, Heckbert SR, Heredia-Pi IB, Heydarpour P, Hilderink HBM, Hoek HW, Hogg RS, Horino M, Horita N, Hosgood HD, Hotez PJ, Hoy DG, Hsairi M, Htet AS, Htike MMT, Hu G, Huang C, Huang H, Huiart L, Husseini A, Huybrechts I, Huynh G, Iburg KM, Innos K, Inoue M, Iyer VJ, Jacobs TA, Jacobsen KH, Jahanmehr N, Jakovljevic MB, James P, Javanbakht M, Jayaraman SP, Jayatilleke AU, Jeemon P, Jensen PN, Jha V, Jiang G, Jiang Y, Jibat T, Jimenez-Corona A, Jonas JB, Joshi TK, Kabir Z, Kamal R, Kan H, Kant S, Karch A, Karema CK, Karimkhani C, Karletsos D, Karthikeyan G, Kasaeian A, Katibeh M, Kaul A, Kawakami N, Kayibanda JF, Keiyoro PN, Kemmer L, Kemp AH, Kengne AP, Keren A, Kereselidze M, Kesavachandran CN, Khader YS, Khalil IA, Khan AR, Khan EA, Khang Y-H, Khera S, Khoja TAM, Kieling C, Kim D, Kim YJ, Kissela BM, Kissoon N, Knibbs LD, Knudsen AK, Kokubo Y, Kolte D, Kopec JA, Kosen S, Koul PA, Koyanagi A, Krog NH, Defo BK, Bicer BK, Kudom AA, Kuipers EJ, Kulkarni VS, Kumar GA, Kwan GF, Lal A, Lal DK, Lalloo R, Lallukka T, Lam H, Lam JO, Langan SM, Lansingh VC, Larsson A, Laryea DO, Latif AA, Lawrynowicz AEB, Leigh J, Levi M, Li Y, Lindsay MP, Lipshultz SE, Liu PY, Liu S, Liu Y, Lo L-T, Logroscino G, Lotufo PA, Lucas RM, Lunevicius R, Lyons RA, Ma S, Machado VMP, Mackay MT, MacLachlan JH, Razek HMAE, Magdy M, Razek AE, Majdan M, Majeed A, Malekzadeh R, Manamo WAA, Mandisarisa J, Mangalam S, Mapoma CC, Marcenes W, Margolis DJ, Martin GR, Martinez-Raga J, Marzan MB, Masiye F, Mason-Jones AJ, Massano J, Matzopoulos R, Mayosi BM, McGarvey ST, McGrath JJ, McKee M, McMahon BJ, Meaney PA, Mehari A, Mehndiratta MM, Mejia-Rodriguez F, Mekonnen AB, Melaku YA, Memiah P, Memish ZA, Mendoza W, Meretoja A, Meretoja TJ, Mhimbira FA, Micha R, Millear A, Miller TR, Mirarefin M, Misganaw A, Mock CN, Mohammad KA, Mohammadi A, Mohammed S, Mohan V, Mola GLD, Monasta L, Hernandez JCM, Montero P, Montico M, Montine TJ, Moradi-Lakeh M, Morawska L, Morgan K, Mori R, Mozaffarian D, Mueller UO, Murthy GVS, Murthy S, Musa KI, Nachega JB, Nagel G, Naidoo KS, Naik N, Naldi L, Nangia V, Nash D, Nejjari C, Neupane S, Newton CR, Newton JN, Ng M, Ngalesoni FN, de Dieu Ngirabega J, Nguyen QL, Nisar MI, Pete PMN, Nomura M, Norheim OF, Norman PE, Norrving B, Nyakarahuka L, Ogbo FA, Ohkubo T, Ojelabi FA, Olivares PR, Olusanya BO, Olusanya JO, Opio JN, Oren E, Ortiz A, Osman M, Ota E, Ozdemir R, Pa M, Pain A, Pandian JD, Pant PR, Papachristou C, Park E-K, Park J-H, Parry CD, Parsaeian M, Caicedo AJP, Patten SB, Patton GC, Paul VK, Pearce N, Pedro JM, Stokic LP, Pereira DM, Perico N, Pesudovs K, Petzold M, Phillips MR, Piel FB, Pillay JD, Plass D, Platts-Mills JA, Polinder S, Pope CA, Popova S, Poulton RG, Pourmalek F, Prabhakaran D, Qorbani M, Quame-Amaglo J, Quistberg DA, Rafay A, Rahimi K, Rahimi-Movaghar V, Rahman M, Rahman MHU, Rahman SU, Rai RK, Rajavi Z, Rajsic S, Raju M, Rakovac I, Rana SM, Ranabhat CL, Rangaswamy T, Rao P, Rao SR, Refaat AH, Rehm J, Reitsma MB, Remuzzi G, Resnikoff S, Ribeiro AL, Ricci S, Blancas MJR, Roberts B, Roca A, Rojas-Rueda D, Ronfani L, Roshandel G, Rothenbacher D, Roy A, Roy NK, Ruhago GM, Sagar R, Saha S, Sahathevan R, Saleh MM, Sanabria JR, Sanchez-Niño MD, Sanchez-Riera L, Santos IS, Sarmiento-Suarez R, Sartorius B, Satpathy M, Savic M, Sawhney M, Schaub MP, Schmidt MI, Schneider IJC, Schöttker B, Schutte AE, Schwebel DC, Seedat S, Sepanlou SG, Servan-Mori EE, Shackelford KA, Shaddick G, Shaheen A, Shahraz S, Shaikh MA, Shakh-Nazarova M, Sharma R, She J, Sheikhbahaei S, Shen J, Shen Z, Shepard DS, Sheth KN, Shetty BP, Shi P, Shibuya K, Shin M-J, Shiri R, Shiue I, Shrime MG, Sigfusdottir ID, Silberberg DH, Silva DAS, Silveira DGA, Silverberg JI, Simard EP, Singh A, Singh GM, Singh JA, Singh OP, Singh PK, Singh V, Soneji S, Søreide K, Soriano JB, Sposato LA, Sreeramareddy CT, Stathopoulou V, Stein DJ, Stein MB, Stranges S, Stroumpoulis K, Sunguya BF, Sur P, Swaminathan S, Sykes BL, Szoeke CEI, Tabarés-Seisdedos R, Tabb KM, Takahashi K, Takala JS, Talongwa RT, Tandon N, Tavakkoli M, Taye B, Taylor HR, Ao BJT, Tedla BA, Tefera WM, Have MT, Terkawi AS, Tesfay FH, Tessema GA, Thomson AJ, Thorne-Lyman AL, Thrift AG, Thurston GD, Tillmann T, Tirschwell DL, Tonelli M, Topor-Madry R, Topouzis F, Towbin JA, Traebert J, Tran BX, Truelsen T, Trujillo U, Tura AK, Tuzcu EM, Uchendu US, Ukwaja KN, Undurraga EA, Uthman OA, Dingenen RV, van Donkelaar A, Vasankari T, Vasconcelos AMN, Venketasubramanian N, Vidavalur R, Vijayakumar L, Villalpando S, Violante FS, Vlassov VV, Wagner JA, Wagner GR, Wallin MT, Wang L, Watkins DA, Weichenthal S, Weiderpass E, Weintraub RG, Werdecker A, Westerman R, White RA, Wijeratne T, Wilkinson JD, Williams HC, Wiysonge CS, Woldeyohannes SM, Wolfe CDA, Won S, Wong JQ, Woolf AD, Xavier D, Xiao Q, Xu G, Yakob B, Yalew AZ, Yan LL, Yano Y, Yaseri M, Ye P, Yebyo HG, Yip P, Yirsaw BD, Yonemoto N, Yonga G, Younis MZ, Yu S, Zaidi Z, Zaki MES, Zannad F, Zavala DE, Zeeb H, Zeleke BM, Zhang H, Zodpey S, Zonies D, Zuhlke LJ, Vos T, Lopez AD, Murray CJL; GBD 2015 Mortality and Causes of Death Collaborators . Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388: 1459–1544, 2016. doi: 10.1016/S0140-6736(16)31012-1. [CrossRef] [Google Scholar]

413. Wang J, Panáková D, Kikuchi K, Holdway JE, Gemberling M, Burris JS, Singh SP, Dickson AL, Lin YF, Sabeh MK, Werdich AA, Yelon D, Macrae CA, Poss KD. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138: 3421–3430, 2011. doi: 10.1242/dev.068601. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

414. Warren KS, Baker K, Fishman MC. The slow mo mutation reduces pacemaker current and heart rate in adult zebrafish. Am J Physiol Heart Circ Physiol 281: H1711–H1719, 2001. [PubMed] [Google Scholar]

415. Watkins H, McKenna WJ, Thierfelder L, Suk HJ, Anan R, O’Donoghue A, Spirito P, Matsumori A, Moravec CS, Seidman JG, Seidman CE. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med 332: 1058–1065, 1995. doi: 10.1056/NEJM199504203321603. [PubMed] [CrossRef] [Google Scholar]

416. Weger BD, Weger M, Nusser M, Brenner-Weiss G, Dickmeis T. A chemical screening system for glucocorticoid stress hormone signaling in an intact vertebrate. ACS Chem Biol 7: 1178–1183, 2012. doi: 10.1021/cb3000474. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

417. Weger M, Weger BD, Diotel N, Rastegar S, Hirota T, Kay SA, Strähle U, Dickmeis T. Real-time in vivo monitoring of circadian E-box enhancer activity: a robust and sensitive zebrafish reporter line for developmental, chemical and neural biology of the circadian clock. Dev Biol 380: 259–273, 2013. doi: 10.1016/j.ydbio.2013.04.035. [PubMed] [CrossRef] [Google Scholar]

418. Weinstein BM, Schier AF, Abdelilah S, Malicki J, Solnica-Krezel L, Stemple DL, Stainier DY, Zwartkruis F, Driever W, Fishman MC. Hematopoietic mutations in the zebrafish. Development 123: 303–309, 1996. [PubMed] [Google Scholar]

419. Weinstein BM, Stemple DL, Driever W, Fishman MC. Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nat Med 1: 1143–1147, 1995. doi: 10.1038/nm1195-1143. [PubMed] [CrossRef] [Google Scholar]

420. Wen D, Liu A, Chen F, Yang J, Dai R. Validation of visualized transgenic zebrafish as a high throughput model to assay bradycardia related cardio toxicity risk candidates. J Appl Toxicol 32: 834–842, 2012. doi: 10.1002/jat.2755. [PubMed] [CrossRef] [Google Scholar]

421. Wernstedt Asterholm I, Tao C, Morley TS, Wang QA, Delgado-Lopez F, Wang ZV, Scherer PE. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab 20: 103–118, 2014. doi: 10.1016/j.cmet.2014.05.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

422. White RM, Cech J, Ratanasirintrawoot S, Lin CY, Rahl PB, Burke CJ, Langdon E, Tomlinson ML, Mosher J, Kaufman C, Chen F, Long HK, Kramer M, Datta S, Neuberg D, Granter S, Young RA, Morrison S, Wheeler GN, Zon LI. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 471: 518–522, 2011. doi: 10.1038/nature09882. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

423. Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482: 331–338, 2012. doi: 10.1038/nature10886. [PubMed] [CrossRef] [Google Scholar]

424. Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RH, Cuppen E. Efficient target-selected mutagenesis in zebrafish. Genome Res 13: 2700–2707, 2003. doi: 10.1101/gr.1725103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

425. Williams CH, Hempel JE, Hao J, Frist AY, Williams MM, Fleming JT, Sulikowski GA, Cooper MK, Chiang C, Hong CC. An in vivo chemical genetic screen identifies phosphodiesterase 4 as a pharmacological target for hedgehog signaling inhibition. Cell Reports 11: 43–50, 2015. doi: 10.1016/j.celrep.2015.03.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

426. Wong S, Stephens WZ, Burns AR, Stagaman K, David LA, Bohannan BJ, Guillemin K, Rawls JF. Ontogenetic differences in dietary fat influence microbiota assembly in the zebrafish gut. MBio 6: e00687–e15, 2015. doi: 10.1128/mBio.00687-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

427. Wooderchak-Donahue WL, McDonald J, O’Fallon B, Upton PD, Li W, Roman BL, Young S, Plant P, Fülöp GT, Langa C, Morrell NW, Botella LM, Bernabeu C, Stevenson DA, Runo JR, Bayrak-Toydemir P. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet 93: 530–537, 2013. doi: 10.1016/j.ajhg.2013.07.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

428. Wu X, Kriz AJ, Sharp PA. Target specificity of the CRISPR-Cas9 system. Quant Biol 2: 59–70, 2014. doi: 10.1007/s40484-014-0030-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

429. Xu X, Meiler SE, Zhong TP, Mohideen M, Crossley DA, Burggren WW, Fishman MC. Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin. Nat Genet 30: 205–209, 2002. doi: 10.1038/ng816. [PubMed] [CrossRef] [Google Scholar]

430. Yang J, Xu X. α-Actinin2 is required for the lateral alignment of Z discs and ventricular chamber enlargement during zebrafish cardiogenesis. FASEB J 26: 4230–4242, 2012. doi: 10.1096/fj.12-207969. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

431. Yang XW, Model P, Heintz N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 15: 859–865, 1997. doi: 10.1038/nbt0997-859. [PubMed] [CrossRef] [Google Scholar]

432. Ye L, Robertson MA, Mastracci TL, Anderson RM. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration. Dev Biol 409: 354–369, 2016. doi: 10.1016/j.ydbio.2015.12.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

433. Yelon D, Horne SA, Stainier DY. Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. Dev Biol 214: 23–37, 1999. doi: 10.1006/dbio.1999.9406. [PubMed] [CrossRef] [Google Scholar]

434. Yin C, Evason KJ, Maher JJ, Stainier DY. The basic helix-loop-helix transcription factor, heart and neural crest derivatives expressed transcript 2, marks hepatic stellate cells in zebrafish: analysis of stellate cell entry into the developing liver. Hepatology 56: 1958–1970, 2012. doi: 10.1002/hep.25757. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

435. Yu F, Li R, Parks E, Takabe W, Hsiai TK. Electrocardiogram signals to assess zebrafish heart regeneration: implication of long QT intervals. Ann Biomed Eng 38: 2346–2357, 2010. doi: 10.1007/s10439-010-9993-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

436. Yu HC, Coughlin CR, Geiger EA, Salvador BJ, Elias ER, Cavanaugh JL, Chatfield KC, Miyamoto SD, Shaikh TH. Discovery of a potentially deleterious variant in TMEM87B in a patient with a hemizygous 2q13 microdeletion suggests a recessive condition characterized by congenital heart disease and restrictive cardiomyopathy. Cold Spring Harb Mol Case Stud 2: a000844, 2016. doi: 10.1101/mcs.a000844. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

437. Zada D, Tovin A, Lerer-Goldshtein T, Appelbaum L. Pharmacological treatment and BBB-targeted genetic therapy for MCT8-dependent hypomyelination in zebrafish. Dis Model Mech 9: 1339–1348, 2016. doi: 10.1242/dmm.027227. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

438. Zhang X, Beebe T, Jen N, Lee CA, Tai Y, Hsiai TK. Flexible and waterproof micro-sensors to uncover zebrafish circadian rhythms: The next generation of cardiac monitoring for drug screening. Biosens Bioelectron 71: 150–157, 2015. doi: 10.1016/j.bios.2015.04.027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

439. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455: 627–632, 2008. doi: 10.1038/nature07314. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

440. Zhu S, Russ HA, Wang X, Zhang M, Ma T, Xu T, Tang S, Hebrok M, Ding S. Human pancreatic beta-like cells converted from fibroblasts. Nat Commun 7: 10080, 2016. doi: 10.1038/ncomms10080. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

441. Zhu X, Xu Y, Yu S, Lu L, Ding M, Cheng J, Song G, Gao X, Yao L, Fan D, Meng S, Zhang X, Hu S, Tian Y. An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Sci Rep 4: 6420, 2014. doi: 10.1038/srep06420. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

442. Zon L. Translational research: the path for bringing discovery to patients. Cell Stem Cell 14: 146–148, 2014. doi: 10.1016/j.stem.2014.01.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

443. Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4: 35–44, 2005. doi: 10.1038/nrd1606. [PubMed] [CrossRef] [Google Scholar]

444. Zou J, Tran D, Baalbaki M, Tang LF, Poon A, Pelonero A, Titus EW, Yuan C, Shi C, Patchava S, Halper E, Garg J, Movsesyan I, Yin C, Wu R, Wilsbacher LD, Liu J, Hager RL, Coughlin SR, Jinek M, Pullinger CR, Kane JP, Hart DO, Kwok PY, Deo RC. An internal promoter underlies the difference in disease severity between N- and C-terminal truncation mutations of Titin in zebrafish. eLife 4: e09406, 2015. doi: 10.7554/eLife.09406. [PMC free article] [PubMed] [CrossRef] [Google Scholar]


Page 2

Comparing technologies in zebrafish, mouse, and human

FeatureZebrafishMouseHuman
Genome size*1.4x109 bp2.7 × 109 bp3.0 × 109 bp
Genome assemblyHigh quality (GRCz10)Very high quality (GRCm38)Very high quality (GRCh38)
Number of genes*41,154; 26,373 protein coding46,062; 22,493 protein coding54,220; 20,433 protein coding
Genes shared with humans73%88%100%
Forward geneticsEstablishedLimited by cost and logisticsN/A
Reverse geneticsEstablished; TALEN, CRISPR/Cas9Established; homologous recombination, TALEN, CRISPR/Cas9N/A
Knockdown technologiesEstablished; easy-to-use, cost-efficient with morpholinosEstablished; mostly viral delivery of RNAi constructs with variable efficiency depending on the tissueViral and nonviral methods feasible for some tissues as part of gene therapy strategies
Conditional allelesLimited; difficult to insert Lox sites into genetic lociEstablished; available for many cell typesN/A
Genome engineeringEstablishedEstablishedProof-of-concept for correction of mutations in hematopoietic cells for human blood disorders; established for mutations in iPSC cells for in vitro studies
Cell cultureLimited: few cell lines available; possibility to culture different cell typesCell lines; induced pluripotent stem cells; embryonic stem cells; primary cells well establishedCell lines; induced pluripotent stem cells; embryonic stem cells; primary cells well established
AntibodiesLimitedBroadly availableBroadly available
ImagingEstablished; high-resolution in vivo imaging with standard confocal microscopyLimited; in vivo imaging feasible at some stages and in some tissues, but requires highly sophisticated set-upsLimited to clinical imaging and pathology
PhysiologyLimited due to small organ sizeEstablishedEstablished
Phenotypic small molecule screeningEstablished; large-scale screening in vivoLimited to in vitro screeningLimited to in vitro screening