What is the total magnification of 4x

(Adapted from http://www.biologycorner.com/)

A microscope is an instrument that magnifies an object so that it may be seen by the observer. Because cells are usually too small to see with the naked eye, a microscope is an essential tool in the field of biology. In addition to magnification, microscopes also provide resolution, which is the ability to distinguish two nearby objects as separate. A combination of magnification and resolution is necessary to clearly view specimens under the microscope. The light microscope bends a beam of light at the specimen using a series of lenses to provide a clear image of the specimen to the observer.

In this lab, parts of the microscope will be reviewed. Students will learn the proper use and care of the microscope and observe samples from pond water.

Your microscope has 4 objective lenses: Scanning (4x), Low (10x), High (40x), and Oil Immersion (100x). In this lab, you will not use the oil immersion lens; it is for viewing microorganisms and requires technical instructions not covered in this procedure.

In addition to the objective lenses, the ocular lens (eyepiece) has a magnification. The total magnification is determined by multiplying the magnification of the ocular and objective lenses.

Magnification Ocular Lens Total Magnification
Scanning 4x 10x 40x
Low Power 10x 10x 100x
High Power 40x 10x 400x
Oil Immersion 100x 10x 1000x

1. Plug your microscope into the power supply and switch on the illuminator.

2. Always start with the stage as low as possible and using scanning objective (4x). Odds are, you will be able to see something on this setting (sometimes it’s only a color). Use the coarse knob to focus: the image may be small at this magnification, but you won't be able to find it on the higher powers without this first step. Move the mechanical stage until your focused image is also centered.

3. Once you've focused using the scanning objective, switch to the low power objective (10x). Use the coarse knob to refocus and move the mechanical stage to re-center your image. Again, if you haven't focused on this level, you will not be able to move to the next level.

4. Now switch to the high power objective (40x). At this point, ONLY use the fine adjustment knob to focus specimens.

5. If the specimen is too light or too dark, try adjusting the diaphragm.

1. Store microscope with the scanning objective in place and the stage in its lowest position.

2. Wrap cords around the microscope.

3. Replace slides to original slide tray.

A large part of the learning process of microscopy is getting used to the orientation of images viewed through the oculars as opposed to with the naked eye. A common mistake is moving the mechanical stage the wrong way to find the specimen. This procedure is merely practice designed to make new users more comfortable with using the microscope.

  • Compound microscope
  • Microscope slide with the letter “e”

This portion of the procedure is another practice to demonstrate depth perception. Many new microscope users find it difficult to conceive that the specimen on the slide is in three dimensions. As the stage is moved up and down, different threads will be in focus.

  • Compound microscope
  • Microscope slide with 3 threads

  • Compound microscope
  • Microscope slide
  • Coverslip
  • Transfer pipette
  • Pond water sample

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

Refer you answer in the figure above, encircle your correct answer. 1. What is true about serving sizes? a. They must be listed in commonly understood … portions (cups, grams, pieces) b. They only need to be listed if there is more than one serving per container​

What is Concentrated Solution?( With explanation )​

pahelp pooo thankyou!​

is science investigation important to investigate the concept of mixtures and concentration? why or why not?

pahelp po please thankyou!​

pa help po, please po thankyou!​

make a list of your daily activities record your data on the table​

Are solution considered as homogenous mixture because their components are distributed evenly and uniformly? ​

pa help po please, thankyou!​

1. A baseball was thrown by a pitcher upwards to test how high he throws. Calculate for the gravitational force if the mass of the baseball is 276 gra … ms.2. An uncrumpled paper is falling from the 3rd floor of the building. It's mass is 37 grams. Calculate for the gravitational force​

What is the total magnification of 4x

Updated December 08, 2020

By Karen G Blaettler

Microscopes magnify the tiniest inhabitants of this world. From the minute details of cells to the delicate cilia of paramecium to the intricate workings of Daphnia, microscopes reveal many miniscule secrets. Calculating total magnification uses simple observation and basic multiplication.

Microscopes use lenses to magnify objects. A simple microscope uses only one lens; a magnifying glass could be called a simple microscope. The magnification of a simple microscope doesn't need any calculation because the single lens is usually labeled. A hand-lens, for example, might be labeled with 10x, meaning the lens magnifies the object to look ten times larger than the actual size.

Compound microscopes use two or more lenses to magnify the specimen. The standard school microscope combines two lenses, the ocular and one objective lens, to magnify the object. The ocular or eyepiece is found at the top of the body tube. The objective lens points down toward the object to be magnified. Most microscopes have three or four objective lenses mounted on a rotating nosepiece. Rotating the nosepiece lets the viewer change the magnification. Different objective lenses provide different magnification options.

Finding the magnification of each lens requires examining the casing of each lens. On the side of the casing is a series of numbers that includes a number followed by x, as 10x. This 10x shows that the lens magnifies an object to appear ten times larger than reality. Depending on the manufacturer, this magnification number may appear at the beginning or at the end of the number sequence. To calculate total magnification, find the magnification of both the eyepiece and the objective lenses. The common ocular magnifies ten times, marked as 10x. The standard objective lenses magnify 4x, 10x and 40x. If the microscope has a fourth objective lens, the magnification will most likely be 100x.

Once the magnification of each individual lens is known, calculating total magnification is simple math. Multiply the magnification of the lenses together. For example, if the eyepiece magnification is 10x and the objective lens in use has a magnification of 4x, the total magnification is:

10\times 4 = 40

The total magnification of 40 means that the object appears forty times larger than the actual object. If the viewer changes to the 10x objective lens, the total magnification will be the ocular's 10x magnification multiplied by the new objective lens's 10x magnification, calculated as:

10\times 10 = 100

Note that calculating magnification in telescopes uses a different equation than calculating magnifiction in microscopes. For telescopes, one magnification calculation uses the focal lengths of the telescope and the eyepiece. That calculation is:

\text{magnification}=\frac{\text{focal length of telescope}}{\text{focal length of eyepiece}}

Like the microscope, these numbers usually can be found on the telescope.