What is impaired spontaneous ventilation?

  1. Stock MC, Downs JB, Frolicher DA. Airway pressure release ventilation. Crit Care Med. 1987;15:462–6.

    CAS  PubMed  Article  Google Scholar 

  2. Putensen C, Zech S, Wrigge H, Zinserling J, Stüber F, Von Spiegel T, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164:43–9.

    CAS  PubMed  Article  Google Scholar 

  3. Marini JJ. Spontaneously regulated vs. controlled ventilation of acute lung injury/acute respiratory distress syndrome. Curr Opin Crit Care. 2011;17:24–9.

    PubMed  Article  Google Scholar 

  4. Putensen C, Muders T, Varelmann D, Wrigge H. The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care. 2006;12:13–8.

    PubMed  Article  Google Scholar 

  5. Wrigge H, Zinserling J, Neumann P, Defosse J, Magnusson A, Putensen C, et al. Spontaneous breathing improves lung aeration in oleic acid-induced lung injury. Anesthesiology. 2003;99:376–84.

    PubMed  Article  Google Scholar 

  6. Wrigge H, Zinserling J, Neumann P, Muders T, Magnusson A, Putensen C, et al. Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters cyclic alveolar collapse in oleic-acid-induced lung injury: a randomized controlled computed tomography trial. Crit Care. 2005;9:R780–9.

    PubMed Central  PubMed  Article  Google Scholar 

  7. Yoshida T, Rinka H, Kaji A, Yoshimoto A, Arimoto H, Miyaichi T, et al. The impact of spontaneous ventilation on distribution of lung aeration in patients with acute respiratory distress syndrome: airway pressure release ventilation versus pressure support ventilation. Anesth Analg. 2009;109:1892–900.

    PubMed  Article  Google Scholar 

  8. Sassoon CS, Zhu E, Caiozzo VJ. Assist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med. 2004;170:626–32.

    PubMed  Article  Google Scholar 

  9. Jung B, Constantin JM, Rossel N, Le Goff C, Sebbane M, Coisel Y, et al. Adaptive support ventilation prevents ventilator-induced diaphragmatic dysfunction in piglet: an in vivo and in vitro study. Anesthesiology. 2010;112:1435–43.

    PubMed  Article  Google Scholar 

  10. Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012;40:1578–85.

    PubMed  Article  Google Scholar 

  11. Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med. 2013;41:536–45.

    PubMed  Article  Google Scholar 

  12. Yoshida T, Torsani V, Gomes S, Santiago RRDS, Beraldo M, Cost EL, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013;188:1420–7.

    PubMed  Article  Google Scholar 

  13. Gainnier M, Roch A, Forel JM, Thirion X, Arnal JM, Donati S, et al. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2004;32:113–9.

    CAS  PubMed  Article  Google Scholar 

  14. Forel JM, Roch A, Marin V, Michelet P, Demory D, Blache JL, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2006;34:2749–57.

    CAS  PubMed  Article  Google Scholar 

  15. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–16.

    CAS  PubMed  Article  Google Scholar 

  16. Steingrub JS, Lagu T, Rothberg MB, Nathanson BH, Raghunathan K, Lindenauer PK. Treatment with neuromuscular blocking agents and the risk of in-hospital mortality among mechanically ventilated patients with severe sepsis. Crit Care Med. 2014;42:90–6.

    CAS  PubMed  Article  Google Scholar 

  17. Eikermann M, Vidal Melo MF. Therapeutic range of spontaneous breathing during mechanical ventilation. Anesthesiology. 2014;120:536–9.

    PubMed Central  PubMed  Article  Google Scholar 

  18. Hamid O, Shannon J, Martin J. Actions of the respiratory muscles. In: Troyer AD, editor. Physiologic basis of respiratory disease. Hamilton, Ontario, Canada: BC Decker Inc; 2005. p. 263.

    Google Scholar 

  19. Kim MJ, Druz WS, Danon J, Machnach W, Sharp JT. Mechanics of the canine diaphragm. J Appl Physiol. 1976;41:369–82.

    CAS  PubMed  Google Scholar 

  20. Marshall R. Relationships between stimulus and work of breathing at different lung volumes. J Appl Physiol. 1962;17:917–21.

    Google Scholar 

  21. Sant’Ambrogio G, Saibene F. Contractile properties of the diaphragm in some mammals. Respir Physiol. 1970;10:349–57.

    PubMed  Article  Google Scholar 

  22. Pengelly LD, Alderson AM, Milic-Emili J. Mechanics of the diaphragm. J Appl Physiol. 1971;30:797–805.

    CAS  PubMed  Google Scholar 

  23. De Troyer A, Wilson TA. Effect of acute inflation on the mechanics of the inspiratory muscles. J Appl Physiol. 2009;107:315–23.

    PubMed  Article  Google Scholar 

  24. Evans CL, Hill AV. The relation of length to tension development and heat production on contraction in muscle. J Physiol. 1914;49:10–6.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Boriek AM, Black B, Hubmayr R, Wilson TA. Length and curvature of the dog diaphragm. J Appl Physiol. 2006;101:794–8.

    PubMed  Article  Google Scholar 

  26. Talmor DS, Fessler HE. Are esophageal pressure measurements important in clinical decision-making in mechanically ventilated patients? Respir Care. 2010;55:162–72. discussion 172–174.

    PubMed  Google Scholar 

  27. Talmor D, Sarge T, O’Donnell CR, Ritz R, Malhotra A, Lisbon A, et al. Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med. 2006;34:1389–94.

    PubMed Central  PubMed  Article  Google Scholar 

  28. Keenan JC, Formenti P, Marini JJ. Lung recruitment in acute respiratory distress syndrome: what is the best strategy? Curr Opin Crit Care. 2014;20:63–8.

    PubMed  Article  Google Scholar 

  29. Hoppin Jr FG, Green ID, Mead J. Distribution of pleural surface pressure in dogs. J Appl Physiol. 1969;27:863–73.

    PubMed  Google Scholar 

  30. Krueger JJ, Bain T, Patterson Jr JL. Elevation gradient of intrathoracic pressure. J Appl Physiol. 1961;16:465–8.

    CAS  PubMed  Google Scholar 

  31. D’Angelo E, Sant’Ambrogio G, Agostoni E. Effect of diaphragm activity or paralysis on distribution of pleural pressure. J Appl Physiol. 1974;37:311–5.

    PubMed  Google Scholar 

  32. D’Angelo E, Agostoni E. Continuous recording of pleural surface pressure at various sites. J Appl Physiol. 1973;19:356–68.

    Google Scholar 

  33. Minh VD, Friedman PJ, Kurihara N, Moser KM. Ipsilateral transpulmonary pressures during unilateral electrophrenic respiration. J Appl Physiol. 1974;37:505–9.

    CAS  PubMed  Google Scholar 

  34. Minh VD, Kurihara N, Friedman PJ, Moser KM. Reversal of the pleural pressure gradient during electrophrenic stimulation. J Appl Physiol. 1974;37:496–504.

    CAS  PubMed  Google Scholar 

  35. Zidulka A, Nadler S, Anthonisen NR. Pleural pressure with lobar obstruction in dogs. Respir Physiol. 1976;26:239–48.

    CAS  PubMed  Article  Google Scholar 

  36. Hraiech S, Yoshida T, Papazian L. Balancing neuromuscular blockade versus preserved muscle activity. Curr Opin Crit Care. 2015;21:26–33.

    PubMed  Article  Google Scholar 

  37. Hedenstierna G, Edmark L. The effects of anesthesia and muscle paralysis on the respiratory system. Intensive Care Med. 2005;31:1327–35.

    PubMed  Article  Google Scholar 

  38. Hering R, Peters D, Zinserling J, Wrigge H, von Spiegel T, Putensen C. Effects of spontaneous breathing during airway pressure release ventilation on renal perfusion and function in patients with acute lung injury. Intensive Care Med. 2002;28:1426–33.

    PubMed  Article  Google Scholar 

  39. Rose L, Hawkins M. Airway pressure release ventilation and biphasic positive airway pressure: a systematic review of definitional criteria. Intensive Care Med. 2008;34:1766–73.

    PubMed  Article  Google Scholar 

  40. Hering R, Zinserling J, Wrigge H, Varelmann D, Berg A, Kreyer S, et al. Effects of spontaneous breathing during airway pressure release ventilation on respiratory work and muscle blood flow in experimental lung injury. Chest. 2005;128:2991–8.

  41. Saddy F, Moraes L, Santos CL, Oliveira GP, Cruz FF, Morales MM, et al. Biphasic positive airway pressure minimizes biological impact on lung tissue in mild acute lung injury independent of etiology. Crit Care. 2013;17:R228.

    PubMed Central  PubMed  Article  Google Scholar 


Page 2

Transpulmonary pressure difference: muscle paralysis vs. spontaneous breathing. Diaphragmatic contraction can elevate transpulmonary pressure with the same airway pressure applied in muscle paralysis, by altering the pleural components surrounding the lung.