What condition unrelated to cardiac disease is the major cause of right ventricular failure?

  1. Konstam MA, Kiernan MS, Bernstein D et al (2018) Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association. Circulation 137:e578–e622. https://doi.org/10.1161/CIR.0000000000000560

    Article  PubMed  Google Scholar 

  2. Brown LM, Chen H, Halpern S et al (2011) Delay in recognition of pulmonary arterial hypertension: factors identified from the REVEAL registry. Chest 140:19–26. https://doi.org/10.1378/chest.10-1166

    Article  PubMed  PubMed Central  Google Scholar 

  3. Champion HC, Michelakis ED, Hassoun PM (2009) Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit state of the art and clinical and research implications. Circulation 120:992–1007

    Article  PubMed  Google Scholar 

  4. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ (2008) Right ventricular function in cardiovascular disease, part I: Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117:1436–1448

    Article  PubMed  Google Scholar 

  5. Faber MJ, Dalinghaus M, Lankhuizen IM et al (2006) Right and left ventricular function after chronic pulmonary artery banding in rats assessed with biventricular pressure-volume loops. Am J Physiol - Hear Circ Physiol. https://doi.org/10.1152/ajpheart.00286.2006

    Article  Google Scholar 

  6. Kagan A (1952) Dynamic responses of the right ventricle following extensive damage by cauterisation. Circulation 5:816–823. https://doi.org/10.1161/01.CIR.5.6.816

    Article  Google Scholar 

  7. Friedberg MK, Redington AN (2014) Right versus left ventricular failure: differences, similarities, and interactions. Circulation 129:1033–1044. https://doi.org/10.1161/CIRCULATIONAHA.113.001375

    Article  PubMed  Google Scholar 

  8. Noordegraaf AV, Chin KM, Haddad F et al (2019) Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. In: European Respiratory Journal. European Respiratory Society

  9. Naeije R, Vanderpool R, Peacock A, Badagliacca R (2018) The Right heart-pulmonary circulation unit: physiopathology. Heart Fail Clin 14:237–245

    Article  PubMed  Google Scholar 

  10. Guyton AC, Abernathy B, Langston JB et al (1959) Relative importance of venous and arterial resistances in controlling venous return and cardiac output. Am J Physiol 196:1008–1014. https://doi.org/10.1152/ajplegacy.1959.196.5.1008

    Article  CAS  PubMed  Google Scholar 

  11. El Hajj MC, Viray MC, Tedford RJ (2020) Right heart failure: a hemodynamic review. Cardiol Clin 38:161–173

    Article  PubMed  Google Scholar 

  12. Liao H, Chen Q, Liu L et al (2020) Impact of concurrent right ventricular myocardial infarction on outcomes among patients with left ventricular myocardial infarction. Sci Rep 10:1–6. https://doi.org/10.1038/s41598-020-58713-0

    CAS  Google Scholar 

  13. Bellavia D, Iacovoni A, Scardulla C et al (2017) Prediction of right ventricular failure after ventricular assist device implant: systematic review and meta-analysis of observational studies. Eur J Heart Fail 19:926–946

    Article  CAS  PubMed  Google Scholar 

  14. Aquaro GD, Negri F, De Luca A et al (2018) Role of right ventricular involvement in acute myocarditis, assessed by cardiac magnetic resonance. Int J Cardiol 271:359–365. https://doi.org/10.1016/j.ijcard.2018.04.087

    Article  PubMed  Google Scholar 

  15. Kagiyama N, Okura H, Tamada T et al (2016) Impact of right ventricular involvement on the prognosis of takotsubo cardiomyopathy. Eur Heart J Cardiovasc Imaging 17:210–216. https://doi.org/10.1093/ehjci/jev145

    Article  PubMed  Google Scholar 

  16. Szekely Y, Lichter Y, Taieb P et al (2020) Spectrum of cardiac manifestations in COVID-19: a systematic echocardiographic study. Circulation 142:342–353. https://doi.org/10.1161/CIRCULATIONAHA.120.047971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Caravita S, Baratto C, Di Marco F et al (2020) Haemodynamic characteristics of COVID-19 patients with acute respiratory distress syndrome requiring mechanical ventilation. An invasive assessment using right heart catheterisation. Eur J Heart Fail 22:2228–2237. https://doi.org/10.1002/ejhf.2058

    Article  CAS  PubMed  Google Scholar 

  18. Galiè N, Humbert M, Vachiery J-L et al (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 37:67–119. https://doi.org/10.1093/eurheartj/ehv317

    Article  PubMed  Google Scholar 

  19. Simonneau G, Gatzoulis MA, Adatia I, et al (2013) Updated clinical classification of pulmonary hypertension. In: Journal of the American College of Cardiology. J Am Coll Cardiol

  20. Galiè N, Channick RN, Frantz RP et al (2019) Risk stratification and medical therapy of pulmonary arterial hypertension. Eur Respir J 53

  21. Thandavarayan RA, Chitturi KR, Guha A (2020) Pathophysiology of acute and chronic right heart failure. Cardiol Clin 38:149–160

    Article  PubMed  Google Scholar 

  22. Harjola VP, Mebazaa A, Čelutkiene J et al (2016) Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur J Heart Fail 18:226–241. https://doi.org/10.1002/ejhf.478

    Article  PubMed  Google Scholar 

  23. Kobayashi M, Gargani L, Palazzuoli A et al (2020) Association between right-sided cardiac function and ultrasound-based pulmonary congestion on acutely decompensated heart failure: findings from a pooled analysis of four cohort studies. Clin Res Cardiol. https://doi.org/10.1007/s00392-020-01724-8

    PubMed  Google Scholar 

  24. Vonk-Noordegraaf A, Haddad F, Chin KM et al (2013) Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. In: Journal of the American College of Cardiology. J Am Coll Cardiol

  25. Santamore WP, Dell’Italia LJ (1998) Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis 40:289–308. https://doi.org/10.1016/S0033-0620(98)80049-2

    Article  CAS  PubMed  Google Scholar 

  26. Voelkel NF, Quaife RA, Leinwand LA et al (2006) Right ventricular function and failure: Report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 114:1883–1891. https://doi.org/10.1161/CIRCULATIONAHA.106.632208

    Article  PubMed  Google Scholar 

  27. Boerrigter B, Trip P, Bogaard HJ et al (2012) Right atrial pressure affects the interaction between lung mechanics and right ventricular function in spontaneously breathing COPD patients. PLoS ONE 7:e30208. https://doi.org/10.1371/journal.pone.0030208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berger D, Takala J (2018) Determinants of systemic venous return and the impact of positive pressure ventilation. Ann Transl Med 6:350–350. https://doi.org/10.21037/atm.2018.05.27

  29. Abel FL, Waldhausen JA (1969) Respiratory and cardiac effects on venous return. Am Heart J 78:266–275. https://doi.org/10.1016/0002-8703(69)90019-2

    Article  CAS  PubMed  Google Scholar 

  30. Damman K, van Deursen VM, Navis G et al (2009) Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 53:582–588. https://doi.org/10.1016/j.jacc.2008.08.080

    Article  PubMed  Google Scholar 

  31. Mullens W, Abrahams Z, Francis GS et al (2009) Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 53:589–596. https://doi.org/10.1016/j.jacc.2008.05.068

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dini FL, Demmer RT, Simioniuc A et al (2012) Right ventricular dysfunction is associated with chronic kidney disease and predicts survival in patients with chronic systolic heart failure. Eur J Heart Fail 14:287–294. https://doi.org/10.1093/eurjhf/hfr176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pugliese NR, Fabiani I, Conte L et al (2020) Persistent congestion, renal dysfunction and inflammatory cytokines in acute heart failure: a prognosis study. J Cardiovasc Med 21:494–502. https://doi.org/10.2459/JCM.0000000000000974

    Article  CAS  Google Scholar 

  34. Vachiéry JL, Adir Y, Barberà JA et al (2013) Pulmonary hypertension due to left heart diseases. In: Journal of the American College of Cardiology. J Am Coll Cardiol

  35. Pugliese NR, Mazzola M, Madonna R et al (2022) Exercise-induced pulmonary hypertension in HFpEF and HFrEF: different pathophysiologic mechanism behind similar functional impairment. Vascul Pharmacol 144:106978. https://doi.org/10.1016/j.vph.2022.106978

    Article  CAS  PubMed  Google Scholar 

  36. Guazzi M, Bandera F, Ozemek C et al (2017) Cardiopulmonary exercise testing what is its value? JACC 70:1618–1636. https://doi.org/10.1016/j.jacc.2017.08.012

    Article  PubMed  Google Scholar 

  37. Pugliese NR, de Biase N, Balletti A et al (2022) Characterisation of hemodynamic and metabolic abnormalities in the heart failure spectrum: the role of combined cardiopulmonary and exercise echocardiography stress test. Minerva Cardiol Angiol 70:370–384

    Article  PubMed  Google Scholar 

  38. Naeije R, Chin K (2019) Differentiating precapillary from postcapillary pulmonary hypertension: pulmonary artery wedge pressure versus left ventricular end-diastolic pressure. Circulation 140:712–714

    Article  PubMed  Google Scholar 

  39. Chubuchny V, Pugliese NR, Taddei C et al (2021) A novel echocardiographic method for estimation of pulmonary artery wedge pressure and pulmonary vascular resistance. ESC Hear Fail ehf2.13183. https://doi.org/10.1002/ehf2.13183

  40. Guazzi M, Borlaug BA (2012) Pulmonary hypertension due to left heart disease. Circulation 126:975–990

    Article  PubMed  Google Scholar 

  41. Mele D, Pestelli G, Dini FL et al (2020) Novel echocardiographic approach to hemodynamic phenotypes predicts outcome of patients hospitalised with heart failure. Circ Cardiovasc Imaging 13:9939. https://doi.org/10.1161/CIRCIMAGING.119.009939

    Google Scholar 

  42. Gorter TM, Hoendermis ES, van Veldhuisen DJ et al (2016) Right ventricular dysfunction in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail 18:1472–1487. https://doi.org/10.1002/ejhf.630

    Article  PubMed  Google Scholar 

  43. Mohammed SF, Hussain I, Abou Ezzeddine OF et al (2014) Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation 130:2310–2320. https://doi.org/10.1161/CIRCULATIONAHA.113.008461

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fayyaz AU, Edwards WD, Maleszewski JJ et al (2018) Global pulmonary vascular remodeling in pulmonary hypertension associated with heart failure and preserved or reduced ejection fraction. Circulation 137:1796–1810. https://doi.org/10.1161/CIRCULATIONAHA.117.031608

    Article  PubMed  Google Scholar 

  45. Tedford RJ, Hassoun PM, Mathai SC et al (2012) Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation 125:289–297. https://doi.org/10.1161/CIRCULATIONAHA.111.051540

    Article  PubMed  Google Scholar 

  46. Dini FL, Carluccio E, Simioniuc A et al (2016) Right ventricular recovery during follow-up is associated with improved survival in patients with chronic heart failure with reduced ejection fraction. Eur J Heart Fail 18:1462–1471. https://doi.org/10.1002/ejhf.639

    Article  PubMed  Google Scholar 

  47. Gorter TM, van Melle JP, Rienstra M et al (2018) Right Heart dysfunction in heart failure with preserved ejection fraction: the impact of atrial fibrillation. J Card Fail 24:177–185. https://doi.org/10.1016/j.cardfail.2017.11.005

    Article  PubMed  Google Scholar 

  48. Puwanant S, Priester TC, Mookadam F et al (2009) Right ventricular function in patients with preserved and reduced ejection fraction heart failure. Eur J Echocardiogr 10:733–737. https://doi.org/10.1093/ejechocard/jep052

    Article  PubMed  Google Scholar 

  49. Naeije R, Badagliacca R (2017) The overloaded right heart and ventricular interdependence. Cardiovasc Res 113:1474–1485

    Article  CAS  PubMed  Google Scholar 

  50. Badagliacca R, Poscia R, Pezzuto B et al (2015) Right ventricular remodeling in idiopathic pulmonary arterial hypertension: adaptive versus maladaptive morphology. J Hear Lung Transplant 34:395–403. https://doi.org/10.1016/j.healun.2014.11.002

    Article  Google Scholar 

  51. Attard MI, Dawes TJW, De Marvao A et al (2019) Metabolic pathways associated with right ventricular adaptation to pulmonary hypertension: 3D analysis of cardiac magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 20:668–676. https://doi.org/10.1093/ehjci/jey175

    Article  PubMed  Google Scholar 

  52. Thibodeau JT, Drazner MH (2018) The Role of the clinical examination in patients with heart failure. JACC Hear Fail 6:543–551

    Article  Google Scholar 

  53. Kholdani CA, Oudiz RJ, Fares WH (2015) The Assessment of the right heart failure syndrome. Semin Respir Crit Care Med 36:934–942. https://doi.org/10.1055/s-0035-1564925

    Article  PubMed  Google Scholar 

  54. Conn RD, O’Keefe JH (2012) Simplified evaluation of the jugular venous pressure: significance of inspiratory collapse of jugular veins. Mo Med 109:150–152

    PubMed  PubMed Central  Google Scholar 

  55. Correale M, Tricarico L, Leopizzi A et al (2020) Liver disease and heart failure. Panminerva Med 62:26–37

    Article  PubMed  Google Scholar 

  56. Gerges M, Gerges C, Pistritto AM et al (2015) Pulmonary hypertension in heart failure epidemiology, right ventricular function, and survival. Am J Respir Crit Care Med 192:1234–1246. https://doi.org/10.1164/rccm.201503-0529OC

    Article  PubMed  Google Scholar 

  57. Vieillard-Baron A, Naeije R, Haddad F et al (2018) Diagnostic workup, etiologies and management of acute right ventricle failure: a state-of-the-art paper. Intensive Care Med 44:774–790

    Article  PubMed  Google Scholar 

  58. Badagliacca R, Ghio S, Correale M et al (2018) Prognostic significance of the echocardiographic estimate of pulmonary hypertension and of right ventricular dysfunction in acute decompensated heart failure. A pilot study in HFrEF patients. Int J Cardiol 271:301–305. https://doi.org/10.1016/j.ijcard.2018.04.069

    Article  PubMed  Google Scholar 

  59. Schmeißer A, Rauwolf T, Groscheck T et al (2021) Predictors and prognosis of right ventricular function in pulmonary hypertension due to heart failure with reduced ejection fraction. ESC Hear Fail 8:2968–2981. https://doi.org/10.1002/ehf2.13386

    Article  Google Scholar 

  60. Palazzuoli A, Ruocco G (2016) Right heart score for predicting outcome in PAH is it all inclusive? JACC Cardiovasc. Imaging 9:628–630

    Google Scholar 

  61. Melenovsky V, Hwang SJ, Lin G et al (2014) Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J 35:3452–3462. https://doi.org/10.1093/eurheartj/ehu193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carluccio E, Biagioli P, Lauciello R et al (2019) Superior prognostic value of right ventricular free wall compared to global longitudinal strain in patients with heart failure. J Am Soc Echocardiogr 32:836-844.e1. https://doi.org/10.1016/j.echo.2019.02.011

    Article  PubMed  Google Scholar 

  63. Pellegrini P, Rossi A, Pasotti M et al (2014) Prognostic relevance of pulmonary arterial compliance in patients with chronic heart failure. Chest 145:1064–1070. https://doi.org/10.1378/chest.13-1510

    Article  PubMed  Google Scholar 

  64. Ghio S, Guazzi M, Scardovi AB et al (2017) Different correlates but similar prognostic implications for right ventricular dysfunction in heart failure patients with reduced or preserved ejection fraction. Eur J Heart Fail 19:873–879. https://doi.org/10.1002/ejhf.664

    Article  CAS  PubMed  Google Scholar 

  65. Ghio S, Gavazzi A, Campana C et al (2001) Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 37:183–188. https://doi.org/10.1016/S0735-1097(00)01102-5

    Article  CAS  PubMed  Google Scholar 

  66. Pugliese NR, De Biase N, Gargani L et al (2021) Predicting the transition to and progression of heart failure with preserved ejection fraction: a weighted risk score using bio-humoural, cardiopulmonary, and echocardiographic stress testing. Eur J Prev Cardiol 28:1650–1661. https://doi.org/10.1093/eurjpc/zwaa129

    Article  PubMed  Google Scholar 

  67. Testani JM, McCauley BD, Kimmel SE, Shannon RP (2010) Characteristics of patients with improvement or worsening in renal function during treatment of acute decompensated heart failure. Am J Cardiol 106:1763–1769. https://doi.org/10.1016/j.amjcard.2010.07.050

    Article  PubMed  PubMed Central  Google Scholar 

  68. Arrigo M, Huber LC, Winnik S et al (2019) Right ventricular failure: pathophysiology, diagnosis and treatment. Card Fail Rev 5:140–146. https://doi.org/10.15420/cfr.2019.15.2


Page 2

From: Right ventricular failure in left heart disease: from pathophysiology to clinical manifestations and prognosis

Mechanism Cause
Increased afterload PAH associated with HFrEF, HFmrEF and HFpEF
  Mitral stenosis
Heart transplant and LV assist device
Acute pulmonary embolism and chronic pulmonary thromboembolism
Acute respiratory distress syndrome
COVID-19
Idiopathic PAH
Chronic pulmonary disease
Sleep-related breathing disorders
Abnormal preload Hypo- or hypervolemia
  Pericardial tamponade
Mechanical ventilation
Left-to-right shunt
Reduced contractility RV ischemia/infarction
  Cardiomyopathies
Myocarditis
Arrhythmogenic RV cardiomyopathy

  1. PAH pulmonary artery hypertension, HFrEF HF with reduced EF, HFmrEF HF with mildly reduced EF, HFpEF HF with preserved EF, LV left ventricular, RV right ventricular.