Resolvendo a equação ax,3 = 4 ax,2 encontramos como solução:

A equação reduzida da reta é a maneira de representar de forma algébrica a reta, sendo possível obter, por meio do estudo da geometria analítica, informações importantes sobre o comportamento da reta quando representada no plano cartesiano.

A equação reduzida da reta é a equação y = mx + n, em que m e n são, respectivamente, os coeficientes angular e linear, e x e y são, respectivamente, a variável independente e dependente. Por meio do valor do coeficiente angular, é possível saber se a reta é crescente, decrescente ou constante. Já o coeficiente linear mostra o ponto em que a reta intercepta o eixo vertical y.

Leia também: Elipse — figura muito estudada na geometria plana e na analítica

Qual é a equação reduzida da reta?

Resolvendo a equação ax,3 = 4 ax,2 encontramos como solução:
Equação reduzida da reta.

No estudo da geometria analítica, é bastante recorrente a representação de figuras geométricas por meio de uma equação. Com a reta não é diferente, e a equação reduzida que descreve a reta é a seguinte:

m → coeficiente angular

n → coeficiente linear

y → variável dependente

x → variável independente

Vale salientar que m e n são números reais.

Exemplos:

a) y = 2x – 4
m = 2 e n = – 4

b) y = – 3x + 5
m = – 3 e n = 5

A equação da reta nos dá a coleção de pontos que formam a reta no plano cartesiano, sendo possível analisar o gráfico por meio da equação e fazer a sua representação no plano cartesiano. Para entender como encontrar a equação da reta, vamos antes conhecer o significado de cada um dos seus coeficientes e aprender a encontrá-los.

O coeficiente angular está ligado à inclinação da reta e o cálculo desse coeficiente pode ser feito de duas maneiras:

  • quando conhecemos a inclinação da reta em relação ao eixo x;

  • quando conhecemos dois pontos pertencentes à reta.

O primeiro método é calcular a tangente do ângulo que a reta faz com o eixo x no sentido anti-horário.

Conhecendo o valor do ângulo α, temos que:

Exemplo:

Encontre o coeficiente angular da reta a seguir:

Como o ângulo é de 45º, então basta calcular a tangente de 45º.

m = tg 45º

m = 1

Mais recorrente que o primeiro caso, no segundo caso encontramos o coeficiente angular da reta conhecendo dois pontos A(x1,y1) e B (x2, y2). Para isso, utilizamos a fórmula a seguir:

Resolvendo a equação ax,3 = 4 ax,2 encontramos como solução:
Coeficiente angular da reta conhecendo dois pontos.

Exemplo:

Encontre o coeficiente angular da reta utilizando os pontos A e B do gráfico a seguir:

Ao analisar a malha quadriculada, é fácil ver que as coordenadas são A(1,1) e B( – 1, 3). Usando esses dois pontos, temos que:

O coeficiente angular traz informações importantes sobre o gráfico da reta. Podemos classificar essa reta como crescente, decrescente ou constante de acordo com o valor do coeficiente angular.

Resolvendo a equação ax,3 = 4 ax,2 encontramos como solução:
As retas são crescentes, decrescentes e constantes respectivamente.

Exemplos:

  • y = 2x – 1 → crescente, pois m = 2.

  • y = – x + 5 → decrescente, pois m = – 1.

  • y = 3 → constante, pois m = 0.

Veja também: Qual é a equação geral da circunferência?

Coeficiente linear

Na equação reduzida y = mx + n, conhecemos o n como coeficiente linear. Quando x = 0, o valor de y = n; sendo assim, o coeficiente linear é o ponto em que a reta intercepta o eixo y.

Passo a passo de como calcular a equação reduzida da reta

Para calcular a equação reduzida da reta, é necessário encontrar o valor do coeficiente angular e do coeficiente linear. Para isso, precisamos conhecer dois pontos pertencentes à reta. Veja o passo a passo para encontrar a equação da reta.

  • 1º passo: encontramos o valor do coeficiente angular m.

  • 2º passo: substituir na equação y = mx + n o valor encontrado para m e o valor de x e y pelo valor de um dos dois pontos.

  • 3º passo: resolver a equação para calcular o valor de n.

  • 4º passo: agora que conhecemos o valor de m e n, bastar substituir na equação reduzida y = mx + n para encontrar a equação da reta.

Exemplo:

Encontre a equação da reta que passa pelos pontos A (2,1) e B (4,7).

Primeiro encontramos o coeficiente angular:

Agora que encontramos o coeficiente angular, escolhemos um ponto: por exemplo, o ponto A (2,1). Na equação y = mx + n, vamos substituir os valores do ponto A, ou seja, x = 2 e y = 1, e também o valor encontrado para m, no caso m= 3.

y = mx + n
x = 2 y = 1 e m = 3

1 = 3 · 2 + n 1 = 6 + n 1 – 6 = n

n = – 5

Como conhecemos o valor de m e de n, então a equação reduzida da reta será:

y = mx + n
m = 3 e n = – 5

y = 3x + ( – 5)
y = 3x – 5

Representação gráfica da reta

Para construir o gráfico da reta conhecendo a sua equação, encontramos dois pontos pertencentes a essa reta e traçamos a reta que passa por esses dois pontos.

Exemplo:

Encontre o gráfico da reta y = 2x – 1.

Analisando a reta, o primeiro ponto, que é o mais fácil de identificar, é A ( 0, – 1), pois sabemos que o coeficiente linear é o ponto em que a reta intercepta o eixo y. Se substituirmos na equação x = 0, encontramos y = – 1.

Agora precisamos de outro ponto qualquer. Para isso, atribuímos um valor para x e encontramos o seu correspondente em y. Por exemplo, escolhendo x = 1, temos que:

y = 2x – 1

x = 1

y = 2 ·1 – 1

y = 2 – 1

y = 1

O ponto B (1, 1) pertence à reta, então marcamos os pontos A(0, –1) e B (1,1) no plano cartesiano e traçamos a reta que passa por esses dois pontos.

Veja também: Como calcular a distância entre dois pontos no espaço?

Exercícios resolvidos

Questão 1 - Analisando as equações, marque a alternativa correta:

I → y = – 2x + 5

II → y = – 2 + 3x

III → y = 5

As retas são, respectivamente:

A) crescente, decrescente e constante. B) decrescente, decrescente e constante. C) crescente, decrescente e crescente.

D) decrescente, crescente e crescente.

E) decrescente, crescente e constante.

Resolução

Alternativa E.

I → m = – 2. Como ele é negativo, a reta é decrescente.

II → m = 3. Como ele é positivo, a reta é crescente.

III → m = 0. Note que x não aparece, logo m = 0, então a reta é constante.

Questão 2 - Dada a reta que passa pelos pontos A(-1, 2) e B (2,3), o seu coeficiente angular é igual a:

Resolução

Alternativa D.
Dados os dois pontos, encontraremos o coeficiente angular:

Uma equação polinomial é caracterizada por ter um polinômio igual a zero. Ela  pode ser caracterizada pelo grau do polinômio, e, quanto maior esse grau, maior será o grau de dificuldade para encontrar-se sua solução ou raiz.

É importante também, nesse contexto, compreender o que é o teorema fundamental da álgebra, que afirma que toda equação polinomial possui pelo menos uma solução complexa, em outras palavras: uma equação de grau um terá, pelo menos, uma solução, uma equação de grau dois, terá, pelo menos, duas soluções, e assim sucessivamente.

Leia também: Quais são as classes de polinômios?

O que é uma equação polinomial

Uma equação polinomial é caracterizada por ter um polinômio igualado a zero, assim, toda expressão do tipo P(x) = 0 é uma equação polinomial, em que P(x) é um polinômio. Veja, a seguir, o caso geral de uma equação polinomial e alguns exemplos.

Considere an, an –1, a n –2, …, a1, a0 e x números reais, e n um número inteiro positivo, a expressão seguinte é uma equação polinomial de grau n.

As equações seguintes são polinomiais.

a) 3x4 + 4x2 – 1 = 0

b) 5x2 – 3 = 0

c) 6x – 1 = 0

d) 7x3 – x2 + 4x + 3 = 0

Assim como os polinômios, as equações polinomiais possuem seu grau. Para determinar o grau de uma equação polinomial, basta encontrar a maior potência cujo coeficiente seja diferente de zero. Portanto, as equações dos itens anteriores são, respetivamente:

a) A equação é do quarto grau: 3x4 + 4x2 – 1 = 0.

b) A equação é do segundo grau: 5x2 – 3 = 0.

c) A equação é do primeiro grau: 6x – 1 = 0.

d) A equação é do terceiro grau: 7x3 – x2 + 4x + 3 = 0.

O método de resolução para uma equação polinomial depende do seu grau. Quanto maior o grau de uma equação, maior a dificuldade em resolvê-la. Neste artigo, mostraremos o método de resolução para equações polinomiais do primeiro grau, segundo grau e biquadradas.

Uma equação polinomial do primeiro grau é descrita por um polinômio de grau 1. Assim podemos escrever uma equação do primeiro grau, de forma geral, da seguinte maneira.

Considere dois números reais a e b com a ≠ 0, a expressão a seguir é uma equação polinomial do primeiro grau:

ax + b = 0

Para resolver essa equação, devemos utilizar o princípio da equivalência, ou seja, tudo que é operado em um lado da igualdade dever também ser operado do outro lado. Para determinar a solução de uma equação do primeiro grau, devemos isolar a incógnita. Para isso, o primeiro passo é eliminar o b do lado esquerdo da igualdade, e, em seguida, subtrairemos b dos dois lados da igualdade.

ax + b – b = 0 – b

ax = – b

Veja que ainda o valor da incógnita x não está isolado, o coeficiente a precisa ser eliminado do lado esquerdo da igualdade, e, para isso, vamos dividir ambos os lados por a.

Resolva a equação 5x + 25 = 0.        

Para resolver o problema, devemos utilizar o princípio da equivalência. Tendo em vista facilitar o processo, omitiremos a escrita da operação do lado esquerdo da igualdade, sendo equivalente então dizer que vamos “passar” o número para o outro lado, trocando o sinal (operação inversa).

Saiba mais sobre a resolução desse tipo de equação acessando o nosso texto: Equação do primeiro grau com uma incógnita.

Uma equação polinomial do segundo grau tem como característica um polinômio de grau dois. Assim, considere a, b e c números reais com a ≠ 0. Uma equação do segundo grau é dada por:

ax2 + bx + c = 0

A sua solução pode ser determinada utilizando-se o método de Bhaskara ou por fatoração. Se quiser saber mais sobre as equações desse tipo, leia: Equação do segundo grau.

Método de Bhaskara

Utilizando o método de Bhaskara, temos que suas raízes são dadas pela seguinte fórmula:

Determine a solução da equação x2 – 3x + 2 = 0.

Observe que os coeficientes da equação são, respetivamente, a = 1, b = – 3 e c = 2. Substituindo esses valores na fórmula, temos que:

 Fatoração

Veja que é possível fatorar a expressão x2 – 3x + 2 = 0 utilizando a ideia de fatoração de polinômios.

x2 – 3x + 2 = 0

(x – 2) · (x – 1) = 0    

Observe agora que temos um produto igualado a zero, e um produto é igual a zero somente se um dos fatores é igual a zero, portanto, temos que:

x – 2 = 0

x = 2

ou

x – 1 = 0

x = 1

Veja que encontramos a solução da equação utilizando dois métodos diferentes.

A equação biquadrada é um caso particular de uma equação polinomial do quarto grau, normalmente uma equação do quarto grau seria escrita na forma:

ax4 + bx3 + cx2 + dx + e = 0

Em que os números a, b, c, d e e são reais com a ≠ 0. Uma equação do quarto grau é considerada biquadrada quando os coeficientes b = d = 0, ou seja, a equação fica na forma:

ax4 + cx2 + e = 0       

Veja, no exemplo a seguir, como resolver essa equação.

Resolva a equação x4 – 10x2 + 9 = 0.

Para resolver a equação, vamos utilizar a seguinte mudança de incógnita, e sempre que a equação for biquadrada, faremos tal mudança.

x2 = p

Da equação biquadrada, observe que x4 = (x2)2  e, portanto, temos que:

x4 – 10x2 + 9 = 0

  (x2)2 – 10x2 + 9 = 0

p2 – 10p + 9 = 0

Veja que agora temos uma equação polinomial do segundo grau e podemos utilizar o método de Bhaskara, assim:

No entanto, devemos lembrar que, no início do exercício, foi feita uma mudança de incógnita, então, devemos aplicar o valor encontrado na substituição.

x2 = p

Para p = 9 temos que:

x2 = 9

x’ = 3

ou

x’’ = – 3

Para p = 1

x2 = 1

x’ = 1

ou

x’’ = – 1

Portanto, o conjunto solução da equação biquadrada é:

S = {3, –3, 1, –1}

Leia também: Dispositivo prático de Briot-Ruffini – divisão de polinômios

Teorema fundamental da álgebra (TFA)

O teorema fundamental da álgebra (TFA), provado por Gauss em 1799, afirma que toda equação polinomial da seguinte forma possui pelo menos uma raiz complexa.

A raiz de uma equação polinomial é sua solução, ou seja, o valor da incógnita é que torna a igualdade verdadeira. Por exemplo, uma equação do primeiro grau possui uma raiz já determinada, assim como a equação do segundo grau, que possui pelo menos duas raízes, e a biquadrada, que possui pelo menos quatro raízes.

Resolvendo a equação ax,3 = 4 ax,2 encontramos como solução:
A equação do segundo grau é um exemplo de equação polinomial.

Exercícios resolvidos

Questão 1 – Determine o valor de x que torne a igualdade verdadeira.

2x – 8 = 3x + 7

Resolução

Observe que, para resolver a equação, é necessário organizá-la, isto é, deixar todas as incógnitas no lado esquerdo da igualdade.

2x – 8 = 3x + 7

2x – 3x = 7 + 8

– x = 15

Pelo princípio da equivalência, podemos multiplicar ambos os lados da igualdade pelo mesmo número, e, como desejamos descobrir o valor de x,  multiplicaremos ambos os lados por –1.

(–1) – x = 15 (–1)

x = – 15

Questão 2 – Marcos possui R$ 20 a mais que João. Juntos, eles conseguem comprar dois pares de tênis, custando R$ 80 cada par e sem sobrar nenhum dinheiro. Quantos reais têm João?

Resolução

Considere que Marcos possui x reais, como João tem 20 reais a mais, então ele possui x + 20.

Marcos → x reais

João → (x + 20) reais

Como eles compraram dois pares de tênis que custam 80 reais cada, então, se juntarmos as partes de cada um, teremos que:

x + (x + 20) = 2 · 80

x + x = 160 – 20

2x = 140

Portanto, Marcos tinha 70 reais, e João, 90 reais.

Por Robson Luiz
Professor de Matemática