Why should consumers exercise caution when purchasing any product that claims to boost muscle mass?

Image

Why should consumers exercise caution when purchasing any product that claims to boost muscle mass?

Español

Your buddy at the gym can’t say enough about the bodybuilding products he’s been taking to help build muscle mass and strength. You wonder, are they all safe to use?

The U.S. Food and Drug Administration found some bodybuilding products may illegally contain steroids or steroid-like substances associated with potentially serious health risks, including liver injury, which can be life-threatening. The FDA has received hundreds of adverse event reports, including those showing evidence of serious liver injury. 

In addition to liver injury, anabolic steroids have been associated with serious reactions such as:

  • Severe acne
  • Hair loss
  • Altered mood
  • Irritability
  • Increased aggression
  • Depression

They have also been associated with life-threatening reactions such as:

  • Kidney damage
  • Heart attack
  • Stroke
  • Pulmonary embolism (blood clots in the lungs)
  • Deep vein thrombosis (blood clots that occur in veins deep in the body)

These bodybuilding products are promoted as hormone products and/or as alternatives to anabolic steroids for increasing muscle mass and strength. Many of these products make claims about the ability of the active ingredients to enhance or diminish androgen, estrogen, or progestin-like effects in the body, but actually contain anabolic steroids or steroid-like substances, synthetic hormones related to the male hormone testosterone.

Bodybuilding Products May Contain Steroids

The FDA found many of these bodybuilding products labeled as “dietary supplements” both online as well as in retail stores. Many of these products are not dietary supplements at all; they contain undisclosed or unproven ingredients and are illegally marketed, unapproved new drugs. The agency has not reviewed these products for safety, effectiveness, or quality before these companies began marketing.

These potentially harmful, sometimes hidden, ingredients in products promoted for bodybuilding continue to be a concern. The companies making these products are breaking the law by exploiting an easily accessible marketplace to get these products to consumers. In the end, it’s consumers who may not understand the risks who are put in harm’s way by taking dangerous ingredients from products promoted as having miraculous results or making empty promises.

Some who use bodybuilding products engage in “stacking,” which is when a person uses two or more bodybuilding products at once (including stimulants or products providing false assurances of liver protection) to enhance results or “gains.” These combinations may put consumers at greater risk for serious and life-threatening reactions.

What to Do

If you’re taking any bodybuilding products that claim to contain steroids or steroid-like substances, the FDA recommends that you immediately stop taking them because of the potentially serious health risks associated with using them. The agency also recommends that you:

  • Talk to your health care professional about any bodybuilding products or ingredients you have taken, or are planning to take, particularly if you are uncertain about those ingredients.
  • Talk to your health care professional if you are experiencing symptoms possibly associated with these products, particularly nausea, weakness or fatigue, fever, abdominal pain, chest pain, shortness of breath, jaundice (yellowing of the skin or whites of the eyes), or brown or discolored urine.

FDA Taking Regulatory Action

In addition to issuing warning letters, the agency can pursue other regulatory actions as well as enforcement actions against sellers of these illegal products. However, this can be challenging, particularly when sellers operate exclusively online. Firm names or websites often are easily changed, or products can be relabeled to evade authorities and scam consumers.

The FDA encourages consumers and health care professionals to report adverse events or serious side effects related to the use of these products to the FDA’s MedWatch Safety Information and Adverse Event Reporting Program (MedWatch) or to the Safety Reporting Portal.

  1. Leutholtz B, Kreider R: Exercise and Sport Nutrition. Nutritional Health. Edited by: Wilson T, Temple N. 2001, Totowa, NJ: Humana Press, 207-39.

    Chapter  Google Scholar 

  2. Williams MH: Nutrition for Health, Fitness, and Sport. 1999, Dubuque, IA: ACB/McGraw-Hill

    Google Scholar 

  3. Kreider R, Leutholtz B, Katch F, Katch V: Exercise & Sport Nutrition. 2009, Santa Barbara: Fitness Technologies Press

    Google Scholar 

  4. FDA: Dietary Supplements. 2003, [http://www.cfsan.fda.gov/~dms/ds-faq.html]

    Google Scholar 

  5. Beers MH, Berkow R: The Merck Manual. 1999, Merck Research Laboratories, 17

    Google Scholar 

  6. Sherman WM, Jacobs KA, Leenders N: Carbohydrate metabolism during endurance exercise. Overtraining in Sport. Edited by: Kreider RB, Fry AC, O'Toole ML. 1998, Champaign: Human Kinetics Publishers, 289-308.

    Google Scholar 

  7. Berning JR: Energy intake, diet, and muscle wasting. Overtraining in Sport. Edited by: Kreider RB, Fry AC, O'Toole ML. 1998, Champaign: Human Kinetics, 275-88.

    Google Scholar 

  8. Kreider RB, Fry AC, O'Toole ML: Overtraining in Sport. 1998, Champaign: Human Kinetics Publishers

    Google Scholar 

  9. Kreider RB: Physiological considerations of ultraendurance performance. Int J Sport Nutr. 1991, 1 (1): 3-27.

    CAS  PubMed  Google Scholar 

  10. Brouns F, Saris WH, Beckers E, Adlercreutz H, Vusse van der GJ, Keizer HA, Kuipers H, Menheere P, Wagenmakers AJ, ten Hoor F: Metabolic changes induced by sustained exhaustive cycling and diet manipulation. Int J Sports Med. 1989, 10 (Suppl 1): S49-62. 10.1055/s-2007-1024954.

    PubMed  Article  Google Scholar 

  11. Brouns F, Saris WH, Stroecken J, Beckers E, Thijssen R, Rehrer NJ, ten Hoor F: Eating, drinking, and cycling. A controlled Tour de France simulation study, Part I. Int J Sports Med. 1989, 10 (Suppl 1): S32-40. 10.1055/s-2007-1024952.

    PubMed  Article  Google Scholar 

  12. Brouns F, Saris WH, Stroecken J, Beckers E, Thijssen R, Rehrer NJ, ten Hoor F: Eating, drinking, and cycling. A controlled Tour de France simulation study Part II. Effect of diet manipulation. Int J Sports Med. 1989, 10 (Suppl 1): S41-8. 10.1055/s-2007-1024953.

    PubMed  Article  Google Scholar 

  13. Kerksick C, Harvey T, Stout J, Campbell B, Wilborn C, Kreider R, Kalman D, Ziegenfuss T, Lopez H, Landis J, Ivy JL, Antonio J: International Society of Sports Nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2008, 5: 17-10.1186/1550-2783-5-17.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  14. Harger-Domitrovich SG, McClaughry AE, Gaskill SE, Ruby BC: Exogenous carbohydrate spares muscle glycogen in men and women during 10 h of exercise. Med Sci Sports Exerc. 2007, 39 (12): 2171-9. 10.1249/mss.0b013e318157a650.

    CAS  PubMed  Article  Google Scholar 

  15. Rodriguez NR, Di Marco NM, Langley S: American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009, 41 (3): 709-31. 10.1249/MSS.0b013e31890eb86.

    PubMed  Article  CAS  Google Scholar 

  16. Rodriguez NR, DiMarco NM, Langley S: Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J Am Diet Assoc. 2009, 109 (3): 509-27. 10.1016/j.jada.2009.01.005.

    PubMed  Article  CAS  Google Scholar 

  17. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS: American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007, 39 (2): 377-90. 10.1249/mss.0b013e31802ca597.

    PubMed  Article  Google Scholar 

  18. Currell K, Jeukendrup AE: Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008, 40 (2): 275-81. 10.1249/mss.0b013e31815adf19.

    CAS  PubMed  Article  Google Scholar 

  19. Jeukendrup AE, Moseley L: Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sports. 2008

    Google Scholar 

  20. Earnest CP, Lancaster SL, Rasmussen CJ, Kerksick CM, Lucia A, Greenwood MC, Almada AL, Cowan PA, Kreider RB: Low vs. high glycemic index carbohydrate gel ingestion during simulated 64-km cycling time trial performance. J Strength Cond Res. 2004, 18 (3): 466-72. 10.1519/R-xxxxx.1.

    PubMed  Google Scholar 

  21. Venables MC, Brouns F, Jeukendrup AE: Oxidation of maltose and trehalose during prolonged moderate-intensity exercise. Med Sci Sports Exerc. 2008, 40 (9): 1653-9. 10.1249/MSS.0b013e318175716c.

    CAS  PubMed  Article  Google Scholar 

  22. Jentjens RL, Jeukendrup AE: Effects of pre-exercise ingestion of trehalose, galactose and glucose on subsequent metabolism and cycling performance. Eur J Appl Physiol. 2003, 88 (4-5): 459-65. 10.1007/s00421-002-0729-7.

    CAS  PubMed  Article  Google Scholar 

  23. Achten J, Jentjens RL, Brouns F, Jeukendrup AE: Exogenous oxidation of isomaltulose is lower than that of sucrose during exercise in men. J Nutr. 2007, 137 (5): 1143-8.

    CAS  PubMed  Google Scholar 

  24. Jentjens RL, Venables MC, Jeukendrup AE: Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol. 2004, 96 (4): 1285-91. 10.1152/japplphysiol.01023.2003.

    CAS  PubMed  Article  Google Scholar 

  25. Jeukendrup AE, Jentjens R: Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sports Med. 2000, 29 (6): 407-24. 10.2165/00007256-200029060-00004.

    CAS  PubMed  Article  Google Scholar 

  26. Rowlands DS, Wallis GA, Shaw C, Jentjens RL, Jeukendrup AE: Glucose polymer molecular weight does not affect exogenous carbohydrate oxidation. Med Sci Sports Exerc. 2005, 37 (9): 1510-6. 10.1249/01.mss.0000177586.68399.f5.

    CAS  PubMed  Article  Google Scholar 

  27. Lemon PW, Tarnopolsky MA, MacDougall JD, Atkinson SA: Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. J Appl Physiol. 1992, 73 (2): 767-75.

    CAS  PubMed  Google Scholar 

  28. Tarnopolsky MA, MacDougall JD, Atkinson SA: Influence of protein intake and training status on nitrogen balance and lean body mass. J Appl Physiol. 1988, 64 (1): 187-93.

    CAS  PubMed  Google Scholar 

  29. Tarnopolsky MA, Atkinson SA, MacDougall JD, Chesley A, Phillips S, Schwarcz HP: Evaluation of protein requirements for trained strength athletes. J Appl Physiol. 1992, 73 (5): 1986-95.

    CAS  PubMed  Google Scholar 

  30. Tarnopolsky MA: Protein and physical performance. Curr Opin Clin Nutr Metab Care. 1999, 2 (6): 533-7. 10.1097/00075197-199911000-00018.

    CAS  PubMed  Article  Google Scholar 

  31. Kreider RB: Dietary supplements and the promotion of muscle growth with resistance exercise. Sports Med. 1999, 27 (2): 97-110. 10.2165/00007256-199927020-00003.

    CAS  PubMed  Article  Google Scholar 

  32. Chesley A, MacDougall JD, Tarnopolsky MA, Atkinson SA, Smith K: Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol. 1992, 73 (4): 1383-8.

    CAS  PubMed  Google Scholar 

  33. Kreider RB: Effects of protein and amino acid supplementation on athletic performance. Sportscience. 1999, 3 (1): [http://www.sportsci.org/jour/9901/rbk.html]

    Google Scholar 

  34. Kreider RB, Kleiner SM: Protein supplements for athletes: need vs. convenience. Your Patient & Fitness. 2000, 14 (6): 12-8.

    Google Scholar 

  35. Bucci L, Unlu L: Proteins and amino acid supplements in exercise and sport. Energy-Yielding Macronutrients and Energy Metabolism in Sports Nutrition. Edited by: Driskell J, Wolinsky I. 2000, Boca Raton, FL: CRC Press, 191-212.

    Google Scholar 

  36. Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrere B: Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci USA. 1997, 94 (26): 14930-5. 10.1073/pnas.94.26.14930.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  37. Boirie Y, Beaufrere B, Ritz P: Energetic cost of protein turnover in healthy elderly humans. Int J Obes Relat Metab Disord. 2001, 25 (5): 601-5. 10.1038/sj.ijo.0801608.

    CAS  PubMed  Article  Google Scholar 

  38. Boirie Y, Gachon P, Corny S, Fauquant J, Maubois JL, Beaufrere B: Acute postprandial changes in leucine metabolism as assessed with an intrinsically labeled milk protein. Am J Physiol. 1996, 271 (6 Pt 1): E1083-91.

    CAS  PubMed  Google Scholar 

  39. Campbell B, Kreider RB, Ziegenfuss T, La Bounty P, Roberts M, Burke D, Landis J, Lopez H, Antonio J: International Society of Sports Nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2007, 4: 8-10.1186/1550-2783-4-8.

    PubMed Central  PubMed  Article  Google Scholar 

  40. Venkatraman JT, Leddy J, Pendergast D: Dietary fats and immune status in athletes: clinical implications. Med Sci Sports Exerc. 2000, 32 (7 Suppl): S389-95.

    CAS  PubMed  Article  Google Scholar 

  41. Dorgan JF, Judd JT, Longcope C, Brown C, Schatzkin A, Clevidence BA, Campbell WS, Nair PP, Franz C, Kahle L, Taylor PR: Effects of dietary fat and fiber on plasma and urine androgens and estrogens in men: a controlled feeding study. Am J Clin Nutr. 1996, 64 (6): 850-5.

    CAS  PubMed  Google Scholar 

  42. Hamalainen EK, Adlercreutz H, Puska P, Pietinen P: Decrease of serum total and free testosterone during a low-fat high-fibre diet. J Steroid Biochem. 1983, 18 (3): 369-70. 10.1016/0022-4731(83)90117-6.

    CAS  PubMed  Article  Google Scholar 

  43. Reed MJ, Cheng RW, Simmonds M, Richmond W, James VH: Dietary lipids: an additional regulator of plasma levels of sex hormone binding globulin. J Clin Endocrinol Metab. 1987, 64 (5): 1083-5. 10.1210/jcem-64-5-1083.

    CAS  PubMed  Article  Google Scholar 

  44. Fry AC, Kraemer WJ, Ramsey LT: Pituitary-adrenal-gonadal responses to high-intensity resistance exercise overtraining. J Appl Physiol. 1998, 85 (6): 2352-9.

    CAS  PubMed  Google Scholar 

  45. Miller WC, Koceja DM, Hamilton EJ: A meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. Int J Obes Relat Metab Disord. 1997, 21 (10): 941-7. 10.1038/sj.ijo.0800499.

    CAS  PubMed  Article  Google Scholar 

  46. Miller WC: Effective diet and exercise treatments for overweight and recommendations for intervention. Sports Med. 2001, 31 (10): 717-24. 10.2165/00007256-200131100-00002.

    CAS  PubMed  Article  Google Scholar 

  47. Pirozzo S, Summerbell C, Cameron C, Glasziou P: Should we recommend low-fat diets for obesity?. Obes Rev. 2003, 4 (2): 83-90. 10.1046/j.1467-789X.2003.00099.x.

    CAS  PubMed  Article  Google Scholar 

  48. Hu FB, Manson JE, Willett WC: Types of dietary fat and risk of coronary heart disease: a critical review. J Am Coll Nutr. 2001, 20 (1): 5-19.

    PubMed  Article  Google Scholar 

  49. Vessby B: Dietary fat, fatty acid composition in plasma and the metabolic syndrome. Curr Opin Lipidol. 2003, 14 (1): 15-9. 10.1097/00041433-200302000-00004.

    CAS  PubMed  Article  Google Scholar 

  50. Kreider RB: Effects of creatine supplementation on performance and training adaptations. Abstracts of 6th Internationl Conference on Guanidino Compounds in Biology and Medicine. 2001

    Google Scholar 

  51. Carli G, Bonifazi M, Lodi L, Lupo C, Martelli G, Viti A: Changes in the exercise-induced hormone response to branched chain amino acid administration. Eur J Appl Physiol Occup Physiol. 1992, 64 (3): 272-7. 10.1007/BF00626291.

    CAS  PubMed  Article  Google Scholar 

  52. Cade JR, Reese RH, Privette RM, Hommen NM, Rogers JL, Fregly MJ: Dietary intervention and training in swimmers. Eur J Appl Physiol Occup Physiol. 1991, 63 (3-4): 210-5. 10.1007/BF00233850.

    CAS  PubMed  Article  Google Scholar 

  53. Nieman DC, Fagoaga OR, Butterworth DE, Warren BJ, Utter A, Davis JM, Henson DA, Nehlsen-Cannarella SL: Carbohydrate supplementation affects blood granulocyte and monocyte trafficking but not function after 2.5 h or running. Am J Clin Nutr. 1997, 66 (1): 153-9.

    CAS  PubMed  Google Scholar 

  54. Nieman DC: Influence of carbohydrate on the immune response to intensive, prolonged exercise. Exerc Immunol Rev. 1998, 4: 64-76.

    CAS  PubMed  Google Scholar 

  55. Nieman DC: Nutrition, exercise, and immune system function. Clin Sports Med. 1999, 18 (3): 537-48. 10.1016/S0278-5919(05)70167-8.

    CAS  PubMed  Article  Google Scholar 

  56. Burke LM: Nutritional needs for exercise in the heat. Comp Biochem Physiol A Mol Integr Physiol. 2001, 128 (4): 735-48. 10.1016/S1095-6433(01)00279-3.

    CAS  PubMed  Article  Google Scholar 

  57. Burke LM: Nutrition for post-exercise recovery. Aust J Sci Med Sport. 1997, 29 (1): 3-10.

    CAS  PubMed  Google Scholar 

  58. Maughan RJ, Noakes TD: Fluid replacement and exercise stress. A brief review of studies on fluid replacement and some guidelines for the athlete. Sports Med. 1991, 12 (1): 16-31. 10.2165/00007256-199112010-00003.

    CAS  PubMed  Article  Google Scholar 

  59. Zawadzki KM, Yaspelkis BB, Ivy JL: Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992, 72 (5): 1854-9.

    CAS  PubMed  Google Scholar 

  60. Tarnopolsky MA, Bosman M, Macdonald JR, Vandeputte D, Martin J, Roy BD: Postexercise protein-carbohydrate and carbohydrate supplements increase muscle glycogen in men and women. J Appl Physiol. 1997, 83 (6): 1877-83.

    CAS  PubMed  Google Scholar 

  61. Kraemer WJ, Volek JS, Bush JA, Putukian M, Sebastianelli WJ: Hormonal responses to consecutive days of heavy-resistance exercise with or without nutritional supplementation. J Appl Physiol. 1998, 85 (4): 1544-55.

    CAS  PubMed  Google Scholar 

  62. Jeukendrup AE, Currell K, Clarke J, Cole J, Blannin AK: Effect of beverage glucose and sodium content on fluid delivery. Nutr Metab (Lond). 2009, 6: 9-10.1186/1743-7075-6-9.

    Article  CAS  Google Scholar 

  63. Rehrer NJ: Fluid and electrolyte balance in ultra-endurance sport. Sports Med. 2001, 31 (10): 701-15. 10.2165/00007256-200131100-00001.

    CAS  PubMed  Article  Google Scholar 

  64. Sawka MN, Montain SJ: Fluid and electrolyte supplementation for exercise heat stress. Am J Clin Nutr. 2000, 72 (2 Suppl): 564S-72S.

    CAS  PubMed  Google Scholar 

  65. Shirreffs SM, Armstrong LE, Cheuvront SN: Fluid and electrolyte needs for preparation and recovery from training and competition. J Sports Sci. 2004, 22 (1): 57-63. 10.1080/0264041031000140572.

    PubMed  Article  Google Scholar 

  66. Brouns F, Kovacs EM, Senden JM: The effect of different rehydration drinks on post-exercise electrolyte excretion in trained athletes. Int J Sports Med. 1998, 19 (1): 56-60. 10.1055/s-2007-971881.

    CAS  PubMed  Article  Google Scholar 

  67. Kovacs EM, Senden JM, Brouns F: Urine color, osmolality and specific electrical conductance are not accurate measures of hydration status during postexercise rehydration. J Sports Med Phys Fitness. 1999, 39 (1): 47-53.

    CAS  PubMed  Google Scholar 

  68. Kovacs EM, Schmahl RM, Senden JM, Brouns F: Effect of high and low rates of fluid intake on post-exercise rehydration. Int J Sport Nutr Exerc Metab. 2002, 12 (1): 14-23.

    PubMed  Google Scholar 

  69. Meyer LG, Horrigan DJ, Lotz WG: Effects of three hydration beverages on exercise performance during 60 hours of heat exposure. Aviat Space Environ Med. 1995, 66 (11): 1052-7.

    CAS  PubMed  Google Scholar 

  70. Williams MH: Facts and fallacies of purported ergogenic amino acid supplements. Clin Sports Med. 1999, 18 (3): 633-49. 10.1016/S0278-5919(05)70173-3.

    CAS  PubMed  Article  Google Scholar 

  71. Kreider RB: Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem. 2003, 244 (1-2): 89-94. 10.1023/A:1022465203458.

    CAS  PubMed  Article  Google Scholar 

  72. Volek JS, Duncan ND, Mazzetti SA, Putukian M, Gomez AL, Staron RS, Kraemer WJ: Performance and muscle fiber adaptations to 12 weeks of creatine supplementation and heavy resistance training. Medicine & Science in Sports & Exercise. 1999, 31 (5):

  73. Willoughby DS, Rosene J: Effects of oral creatine and resistance training on myosin heavy chain expression. Med Sci Sports Exerc. 2001, 33 (10): 1674-81. 10.1097/00005768-200110000-00010.

    CAS  PubMed  Article  Google Scholar 

  74. Willoughby DS, Rosene JM: Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med Sci Sports Exerc. 2003, 35 (6): 923-9. 10.1249/01.MSS.0000069746.05241.F0.

    CAS  PubMed  Article  Google Scholar 

  75. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M: Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol. 2006, 573 (Pt 2): 525-34. 10.1113/jphysiol.2006.107359.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  76. Williams MH, Kreider R, Branch JD: Creatine: The power supplement. 1999, Champaign, IL: Human Kinetics Publishers

    Google Scholar 

  77. Kreider R, Melton C, Hunt J, Rasmussen C, Ransom J, Stroud T, Cantler E, Milnor P: Creatine does not increase incidence of cramping or injury during pre-season college football training I. Med Sci Sports Exerc. 1999, 31 (5): S355-

    Article  Google Scholar 

  78. Kreider RB, Melton C, Rasmussen CJ, Greenwood M, Lancaster S, Cantler EC, Milnor P, Almada AL: Long-term creatine supplementation does not significantly affect clinical markers of health in athletes. Mol Cell Biochem. 2003, 244 (1-2): 95-104. 10.1023/A:1022469320296.

    CAS  PubMed  Article  Google Scholar 

  79. Graham AS, Hatton RC: Creatine: a review of efficacy and safety. J Am Pharm Assoc (Wash). 1999, 39 (6): 803-10.

    CAS  Google Scholar 

  80. Juhn MS, Tarnopolsky M: Potential side effects of oral creatine supplementation: a critical review. Clin J Sport Med. 1998, 8 (4): 298-304.

    CAS  PubMed  Article  Google Scholar 

  81. Taes YE, Delanghe JR, Wuyts B, Voorde Van De J, Lameire NH: Creatine supplementation does not affect kidney function in an animal model with pre-existing renal failure. Nephrol Dial Transplant. 2003, 18 (2): 258-64. 10.1093/ndt/18.2.258.

    CAS  PubMed  Article  Google Scholar 

  82. Schilling BK, Stone MH, Utter A, Kearney JT, Johnson M, Coglianese R, Smith L, O'Bryant HS, Fry AC, Starks M, Keith R, Stone ME: Creatine supplementation and health variables: a retrospective study. Med Sci Sports Exerc. 2001, 33 (2): 183-8.

    CAS  PubMed  Article  Google Scholar 

  83. Greenwood M, Kreider R, Greenwood L, Byars A: Creatine supplementation does not increase the incidence of injury or cramping in college baseball players. Journal of Exercise Physiology online. 2003, 6 (4): 16-22.

    Google Scholar 

  84. Greenwood M, Kreider R, Greenwood L, Earnest C, Farris J, Brown L: Effects of creatine supplementation on the incidence of cramping/injury during eighteen weeks of collegiate baseball training/competition. Med Sci Sport Exerc. 2002, 34 (S146):

  85. Watsford ML, Murphy AJ, Spinks WL, Walshe AD: Creatine supplementation and its effect on musculotendinous stiffness and performance. J Strength Cond Res. 2003, 17 (1): 26-33. 10.1519/1533-4287(2003)017<0026:CSAIEO>2.0.CO;2.

    PubMed  Google Scholar 

  86. Dalbo VJ, Roberts MD, Stout JR, Kerksick CM: Putting to rest the myth of creatine supplementation leading to muscle cramps and dehydration. Br J Sports Med. 2008, 42 (7): 567-73. 10.1136/bjsm.2007.042473.

    CAS  PubMed  Article  Google Scholar 

  87. Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, Ziegenfuss T, Lopez H, Landis J, Antonio J: International Society of Sports Nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr. 2007, 4: 6-10.1186/1550-2783-4-6.

    PubMed Central  PubMed  Article  Google Scholar 

  88. Brown EC, DiSilvestro RA, Babaknia A, Devor ST: Soy versus whey protein bars: effects on exercise training impact on lean body mass and antioxidant status. Nutr J. 2004, 3: 22-10.1186/1475-2891-3-22.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  89. Candow DG, Burke NC, Smith-Palmer T, Burke DG: Effect of whey and soy protein supplementation combined with resistance training in young adults. Int J Sport Nutr Exerc Metab. 2006, 16 (3): 233-44.

    CAS  PubMed  Google Scholar 

  90. Flakoll PJ, Judy T, Flinn K, Carr C, Flinn S: Postexercise protein supplementation improves health and muscle soreness during basic military training in Marine recruits. J Appl Physiol. 2004, 96 (3): 951-6. 10.1152/japplphysiol.00811.2003.

    PubMed  Article  Google Scholar 

  91. Kalman D, Feldman S, Martinez M, Krieger DR, Tallon MJ: Effect of protein source and resistance training on body composition and sex hormones. J Int Soc Sports Nutr. 2007, 4: 4-10.1186/1550-2783-4-4.

    PubMed Central  PubMed  Article  Google Scholar 

  92. Biolo G, Williams BD, Fleming RY, Wolfe RR: Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes. 1999, 48 (5): 949-57. 10.2337/diabetes.48.5.949.

    CAS  PubMed  Article  Google Scholar 

  93. Borsheim E, Tipton KD, Wolf SE, Wolfe RR: Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab. 2002, 283 (4): E648-57.

    CAS  PubMed  Article  Google Scholar 

  94. Burk A, Timpmann S, Medijainen L, Vahi M, Oopik V: Time-divided ingestion pattern of casein-based protein supplement stimulates an increase in fat-free body mass during resistance training in young untrained men. Nutr Res. 2009, 29 (6): 405-13. 10.1016/j.nutres.2009.03.008.

    CAS  PubMed  Article  Google Scholar 

  95. Cribb PJ, Williams AD, Carey MF, Hayes A: The effect of whey isolate and resistance training on strength, body composition, and plasma glutamine. Int J Sport Nutr Exerc Metab. 2006, 16 (5): 494-509.

    CAS  PubMed  Google Scholar 

  96. Hoffman JR, Ratamess NA, Tranchina CP, Rashti SL, Kang J, Faigenbaum AD: Effect of protein-supplement timing on strength, power, and body-composition changes in resistance-trained men. Int J Sport Nutr Exerc Metab. 2009, 19 (2): 172-85.

    CAS  PubMed  Google Scholar 

  97. Holm L, Olesen JL, Matsumoto K, Doi T, Mizuno M, Alsted TJ, Mackey AL, Schwarz P, Kjaer M: Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women. J Appl Physiol. 2008, 105 (1): 274-81. 10.1152/japplphysiol.00935.2007.

    CAS  PubMed  Article  Google Scholar 

  98. Kobayashi H, Borsheim E, Anthony TG, Traber DL, Badalamenti J, Kimball SR, Jefferson LS, Wolfe RR: Reduced amino acid availability inhibits muscle protein synthesis and decreases activity of initiation factor eIF2B. Am J Physiol Endocrinol Metab. 2003, 284 (3): E488-98.

    CAS  PubMed  Article  Google Scholar 

  99. Miller SL, Tipton KD, Chinkes DL, Wolf SE, Wolfe RR: Independent and combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc. 2003, 35 (3): 449-55. 10.1249/01.MSS.0000053910.63105.45.

    CAS  PubMed  Article  Google Scholar 

  100. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR: An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol. 2000, 88 (2): 386-92.

    CAS  PubMed  Google Scholar 

  101. Rasmussen BB, Wolfe RR, Volpi E: Oral and intravenously administered amino acids produce similar effects on muscle protein synthesis in the elderly. J Nutr Health Aging. 2002, 6 (6): 358-62.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR: Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab. 2001, 281 (2): E197-206.

    CAS  PubMed  Google Scholar 

  103. Verdijk LB, Jonkers RA, Gleeson BG, Beelen M, Meijer K, Savelberg HH, Wodzig WK, Dendale P, van Loon LJ: Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men. Am J Clin Nutr. 2009, 89 (2): 608-16. 10.3945/ajcn.2008.26626.

    CAS  PubMed  Article  Google Scholar 

  104. Willoughby DS, Stout JR, Wilborn CD: Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength. Amino Acids. 2007, 32 (4): 467-77. 10.1007/s00726-006-0398-7.

    CAS  PubMed  Article  Google Scholar 

  105. Wolfe RR: Regulation of muscle protein by amino acids. J Nutr. 2002, 132 (10): 3219S-24S.

    CAS  PubMed  Google Scholar 

  106. Tipton KD, Borsheim E, Wolf SE, Sanford AP, Wolfe RR: Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion. Am J Physiol Endocrinol Metab. 2003, 284 (1): E76-89.

    CAS  PubMed  Article  Google Scholar 

  107. Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M: Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol. 2001, 535 (Pt 1): 301-11. 10.1111/j.1469-7793.2001.00301.x.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  108. Garlick PJ: The role of leucine in the regulation of protein metabolism. J Nutr. 2005, 135 (6 Suppl): 1553S-6S.

    CAS  PubMed  Google Scholar 

  109. Garlick PJ, Grant I: Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Effect of branched-chain amino acids. Biochem J. 1988, 254 (2): 579-84.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  110. Nair KS: Leucine as a regulator of whole body and skeletal muscle protein metabolism in humans. Am J Physiol. 1992, 263 (5 Pt 1): E928-34.

    CAS  PubMed  Google Scholar 

  111. Wilson GJ, Wilson JM, Manninen AH: Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: A review. Nutr Metab (Lond). 2008, 5: 1. 10.1186/1743-7075-5-1.

    Article  CAS  Google Scholar 

  112. Gallagher PM, Carrithers JA, Godard MP, Schulze KE, Trappe SW: Beta-hydroxy-beta-methylbutyrate ingestion, Part I: effects on strength and fat free mass. Med Sci Sports Exerc. 2000, 32 (12): 2109-15. 10.1097/00005768-200012000-00022.

    CAS  PubMed  Article  Google Scholar 

  113. Gallagher PM, Carrithers JA, Godard MP, Schulze KE, Trappe SW: Beta-hydroxy-beta-methylbutyrate ingestion, part II: effects on hematology, hepatic and renal function. Med Sci Sports Exerc. 2000, 32 (12): 2116-9. 10.1097/00005768-200012000-00023.

    CAS  PubMed  Article  Google Scholar 

  114. Nissen S, Sharp R, Ray M: Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance exercise testing. J Am Physiol. 1996, 81: 2095-104.

    CAS  Google Scholar 

  115. Panton LB, Rathmacher JA, Baier S, Nissen S: Nutritional supplementation of the leucine metabolite beta-hydroxy-beta-methylbutyrate (hmb) during resistance training. Nutrition. 2000, 16 (9): 734-9. 10.1016/S0899-9007(00)00376-2.

    CAS  PubMed  Article  Google Scholar 

  116. Slater GJ, Jenkins D: Beta-hydroxy-beta-methylbutyrate (HMB) supplementation and the promotion of muscle growth and strength. Sports Med. 2000, 30 (2): 105-16. 10.2165/00007256-200030020-00004.

    CAS  PubMed  Article  Google Scholar 

  117. Vukovich MD, Stubbs NB, Bohlken RM: Body composition in 70-year-old adults responds to dietary beta-hydroxy-beta-methylbutyrate similarly to that of young adults. J Nutr. 2001, 131 (7): 2049-52.

    CAS  PubMed  Google Scholar 

  118. Knitter AE, Panton L, Rathmacher JA, Petersen A, Sharp R: Effects of beta-hydroxy-beta-methylbutyrate on muscle damage after a prolonged run. J Appl Physiol. 2000, 89 (4): 1340-4.

    CAS  PubMed  Google Scholar 

  119. Smith HJ, Wyke SM, Tisdale MJ: Mechanism of the attenuation of proteolysis-inducing factor stimulated protein degradation in muscle by beta-hydroxy-beta-methylbutyrate. Cancer Res. 2004, 64 (23): 8731-5. 10.1158/0008-5472.CAN-04-1760.

    CAS  PubMed  Article  Google Scholar 

  120. Jowko E, Ostaszewski P, Jank M, Sacharuk J, Zieniewicz A, Wilczak J, Nissen S: Creatine and beta-hydroxy-beta-methylbutyrate (HMB) additively increase lean body mass and muscle strength during a weight-training program. Nutrition. 2001, 17 (7-8): 558-66. 10.1016/S0899-9007(01)00540-8.

    CAS  PubMed  Article  Google Scholar 

  121. O'Connor DM, Crowe MJ: Effects of beta-hydroxy-beta-methylbutyrate and creatine monohydrate supplementation on the aerobic and anaerobic capacity of highly trained athletes. J Sports Med Phys Fitness. 2003, 43 (1): 64-8.

    PubMed  Google Scholar 

  122. Kreider RB, Ferreira M, Wilson M, Almada AL: Effects of calcium beta-hydroxy-beta-methylbutyrate (HMB) supplementation during resistance-training on markers of catabolism, body composition and strength. Int J Sports Med. 1999, 20 (8): 503-9. 10.1055/s-1999-8835.

    CAS  PubMed  Article  Google Scholar 

  123. Slater G, Jenkins D, Logan P, Lee H, Vukovich M, Rathmacher JA, Hahn AG: Beta-hydroxy-beta-methylbutyrate (HMB) supplementation does not affect changes in strength or body composition during resistance training in trained men. Int J Sport Nutr Exerc Metab. 2001, 11 (3): 384-96.

    CAS  PubMed  Google Scholar 

  124. Ransone J, Neighbors K, Lefavi R, Chromiak J: The effect of beta-hydroxy beta-methylbutyrate on muscular strength and body composition in collegiate football players. J Strength Cond Res. 2003, 17 (1): 34-9. 10.1519/1533-4287(2003)017<0034:TEOHMO>2.0.CO;2.

    PubMed  Google Scholar 

  125. Coombes JS, McNaughton LR: Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise. J Sports Med Phys Fitness. 2000, 40 (3): 240-6.

    CAS  PubMed  Google Scholar 

  126. Schena F, Guerrini F, Tregnaghi P, Kayser B: Branched-chain amino acid supplementation during trekking at high altitude. The effects on loss of body mass, body composition, and muscle power. Eur J Appl Physiol Occup Physiol. 1992, 65 (5): 394-8. 10.1007/BF00243503.

    CAS  PubMed  Article  Google Scholar 

  127. Bigard AX, Lavier P, Ullmann L, Legrand H, Douce P, Guezennec CY: Branched-chain amino acid supplementation during repeated prolonged skiing exercises at altitude. Int J Sport Nutr. 1996, 6 (3): 295-306.

    CAS  PubMed  Google Scholar 

  128. Candeloro N, Bertini I, Melchiorri G, De Lorenzo A: [Effects of prolonged administration of branched-chain amino acids on body composition and physical fitness]. Minerva Endocrinol. 1995, 20 (4): 217-23.

    CAS  PubMed  Google Scholar 

  129. Stoppani J, Scheett TP, Pena J, Rudolph C, Charlebois D: Consuming a supplement containing branched-chain amino acids during a resistance-training program increases lean mass, muscle strength and fat loss. Journal of The International Society of Sport Nutrition. 2009, 6 (Suppl 1):

  130. Wernerman J, Hammarqvist F, Vinnars E: Alpha-ketoglutarate and postoperative muscle catabolism. Lancet. 1990, 335 (8691): 701-3. 10.1016/0140-6736(90)90811-I.

    CAS  PubMed  Article  Google Scholar 

  131. Hammarqvist F, Wernerman J, Ali R, Vinnars E: Effects of an amino acid solution enriched with either branched chain amino acids or ornithine-alpha-ketoglutarate on the postoperative intracellular amino acid concentration of skeletal muscle. Br J Surg. 1990, 77 (2): 214-8. 10.1002/bjs.1800770227.

    CAS  PubMed  Article  Google Scholar 

  132. Antonio J, Stout JR: Sport Supplements. 2001, Philadelphia, PA: Lippincott, Williams and Wilkins

    Google Scholar 

  133. Mitch WE, Walser M, Sapir DG: Nitrogen sparing induced by leucine compared with that induced by its keto analogue, alpha-ketoisocaproate, in fasting obese man. J Clin Invest. 1981, 67 (2): 553-62. 10.1172/JCI110066.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  134. Van Koevering M, Nissen S: Oxidation of leucine and alpha-ketoisocaproate to beta-hydroxy-beta-methylbutyrate in vivo. Am J Physiol. 1992, 262 (1 Pt 1): E27-31.

    CAS  PubMed  Google Scholar 

  135. Slama K, Koudela K, Tenora J, Mathova A: Insect hormones in vertebrates: anabolic effects of 20-hydroxyecdysone in Japanese quail. Experientia. 1996, 52 (7): 702-6. 10.1007/BF01925578.

    CAS  PubMed  Article  Google Scholar 

  136. Slama K, Kodkoua M: Insect hormones and bioanalogues: their effect on respiratory metabolism in Dermestes vulpinus L. (Coleoptera). Biol Bull. 1975, 148 (2): 320-32. 10.2307/1540550.

    CAS  PubMed  Article  Google Scholar 

  137. Tashmukhamedova MA, Almatov KT, Syrov VN, Sultanov MB, Abidov AA: [Effect of phytoecdisteroids and anabolic steroids on liver mitochondrial respiration and oxidative phosphorylation in alloxan diabetic rats]. Nauchnye Doki Vyss Shkoly Biol Nauki. 1985 (9): 37-9.

  138. Syrov VN: [Mechanism of the anabolic action of phytoecdisteroids in mammals]. Nauchnye Doki Vyss Shkoly Biol Nauki. 1984 (11): 16-20.

  139. Kholodova Y: Phytoecdysteroids: biological effects, application in agriculture and complementary medicine (as presented at the 14-th Ecdysone Workshop, July, 2000, Rapperswil, Switzerland). Ukr Biokhim Zh. 2001, 73 (3): 21-9.

    CAS  Google Scholar 

  140. Toth N, Szabo A, Kacsala P, Heger J, Zador E: 20-Hydroxyecdysone increases fiber size in a muscle-specific fashion in rat. Phytomedicine. 2008, 15 (9): 691-8. 10.1016/j.phymed.2008.04.015.

    CAS  PubMed  Article  Google Scholar 

  141. Wilborn C, Taylor L, Campbell B, Kerksick C, Rasmussen C, Greenwood M, Kreider R: Effects of methoxyisoflavone, ecdysterone, and sulfo-polysaccharide supplementation on training adaptations in resistance-trained males. Journal of the International Society of Sports Nutrition. 2006, 3 (2): 10.1186/1550-2783-3-2-19.

  142. Bowers CY: Growth hormone-releasing peptide (GHRP). Cell Mol Life Sci. 1998, 54 (12): 1316-29. 10.1007/s000180050257.

    CAS  PubMed  Article  Google Scholar 

  143. Camanni F, Ghigo E, Arvat E: Growth hormone-releasing peptides and their analogs. Front Neuroendocrinol. 1998, 19 (1): 47-72. 10.1006/frne.1997.0158.

    CAS  PubMed  Article  Google Scholar 

  144. Zachwieja JJ, Yarasheski KE: Does growth hormone therapy in conjunction with resistance exercise increase muscle force production and muscle mass in men and women aged 60 years or older? Growth hormone-releasing peptides and their analogs. Phys Ther. 1999, 79 (1): 76-82.

    CAS  PubMed  Google Scholar 

  145. Coudray-Lucas C, Le Bever H, Cynober L, De Bandt JP, Carsin H: Ornithine alpha-ketoglutarate improves wound healing in severe burn patients: a prospective randomized double-blind trial versus isonitrogenous controls. Crit Care Med. 2000, 28 (6): 1772-6. 10.1097/00003246-200006000-00012.

    CAS  PubMed  Article  Google Scholar 

  146. Donati L, Ziegler F, Pongelli G, Signorini MS: Nutritional and clinical efficacy of ornithine alpha-ketoglutarate in severe burn patients. Clin Nutr. 1999, 18 (5): 307-11. 10.1016/S0261-5614(98)80029-0.

    CAS  PubMed  Article  Google Scholar 

  147. Chetlin RD, Yeater RA, Ullrich IH, Hornsby WG, Malanga CJ, Byrner RW: The effect of ornithine alpha-ketoglutarate (OKG) on healthy, weight trained men. J Exerc Physiol Online. 2000, 3 (4): [http://faculty.css.edu/tboone2/asep/ChetlinV2.PDF]

    Google Scholar 

  148. Brilla L, Conte V: Effects of a novel zinc-magnesium formulation on hormones and strength. J Exerc Physiol Online. 2000, 3: 26-36.

    Google Scholar 

  149. Wilborn CD, Kerksick CM, Campbell BI, Taylor LW, Marcello BM, Rasmussen CJ, Greenwood MC, Almada A, Kreider RB: Effects of Zinc Magnesium Aspartate (ZMA) Supplementation on Training Adaptations and Markers of Anabolism and Catabolism. J Int Soc Sports Nutr. 2004, 1 (2): 12-20. 10.1186/1550-2783-1-2-12.

    PubMed Central  PubMed  Article  Google Scholar 

  150. Om AS, Chung KW: Dietary zinc deficiency alters 5 alpha-reduction and aromatization of testosterone and androgen and estrogen receptors in rat liver. J Nutr. 1996, 126 (4): 842-8.

    CAS  PubMed  Google Scholar 

  151. Low SY, Taylor PM, Rennie MJ: Responses of glutamine transport in cultured rat skeletal muscle to osmotically induced changes in cell volume. J Physiol. 1996, 492: 877-85.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  152. Rennie MJ, Ahmed A, Khogali SE, Low SY, Hundal HS, Taylor PM: Glutamine metabolism and transport in skeletal muscle and heart and their clinical relevance. J Nutr. 1996, 126 (3): 1142S-9S.

    CAS  PubMed  Google Scholar 

  153. Varnier M, Leese GP, Thompson J, Rennie MJ: Stimulatory effect of glutamine on glycogen accumulation in human skeletal muscle. Am J Physiol. 1995, 269: E309-15.

    CAS  PubMed  Google Scholar 

  154. Colker CM: Effects of supplemental protein on body composition and muscular strength in healthy athletic male adults. Curr Ther Res. 2000, 61 (1): 19-28. 10.1016/S0011-393X(00)88492-1.

    CAS  Article  Google Scholar 

  155. Candow DG, Chilibeck PD, Burke DG, Davison KS, Smith-Palmer T: Effect of glutamine supplementation combined with resistance training in young adults. Eur J Appl Physiol. 2001, 86 (2): 142-9. 10.1007/s00421-001-0523-y.

    CAS  PubMed  Article  Google Scholar 

  156. Messina M: Soyfoods and soybean phyto-oestrogens (isoflavones) as possible alternatives to hormone replacement therapy (HRT). Eur J Cancer. 2000, 36 (Suppl 4): S71-2. 10.1016/S0959-8049(00)00233-1.

    CAS  PubMed  Article  Google Scholar 

  157. Messina M, Messina V: Soyfoods, soybean isoflavones, and bone health: a brief overview. J Ren Nutr. 2000, 10 (2): 63-8. 10.1016/S1051-2276(00)90001-3.

    CAS  PubMed  Article  Google Scholar 

  158. de Aloysio D, Gambacciani M, Altieri P, Ciaponi M, Ventura V, Mura M, Genazzani AR, Bottiglioni F: Bone density changes in postmenopausal women with the administration of ipriflavone alone or in association with low-dose ERT. Gynecol Endocrinol. 1997, 11 (4): 289-93. 10.3109/09513599709152548.

    CAS  PubMed  Article  Google Scholar 

  159. Slogoff S, Keats AS, Cooley DA, Reul GJ, Frazier OH, Ott DA, Duncan JM, Livesay JJ: Addition of papaverine to cardioplegia does not reduce myocardial necrosis. Ann Thorac Surg. 1986, 42 (1): 60-4.

    CAS  PubMed  Article  Google Scholar 

  160. Smart NA, McKenzie SG, Nix LM, Baldwin SE, Page K, Wade D, Hampson PK: Creatine supplementation does not improve repeat sprint performance in soccer players. Medicine & Science in Sports & Exercise. 1998, 30 (5): S140-10.1097/00005768-199805001-00794.

    Article  Google Scholar 

  161. Aubertin-Leheudre M, Lord C, Khalil A, Dionne IJ: Six months of isoflavone supplement increases fat-free mass in obese-sarcopenic postmenopausal women: a randomized double-blind controlled trial. Eur J Clin Nutr. 2007, 61 (12): 1442-4. 10.1038/sj.ejcn.1602695.

    CAS  PubMed  Article  Google Scholar 

  162. Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-Hikim I, Ma K, Ezzat S, Shen R, Lalani R, Asa S, Mamita M, Nair G, Arver S, Bhasin S: Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci USA. 1998, 95 (25): 14938-43. 10.1073/pnas.95.25.14938.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  163. McPherron AC, Lawler AM, Lee SJ: Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997, 387 (6628): 83-90. 10.1038/387083a0.

    CAS  PubMed  Article  Google Scholar 

  164. McPherron AC, Lee SJ: Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA. 1997, 94 (23): 12457-61. 10.1073/pnas.94.23.12457.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  165. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M: A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet. 1997, 17 (1): 71-4. 10.1038/ng0997-71.

    CAS  PubMed  Article  Google Scholar 

  166. Kambadur R, Sharma M, Smith TP, Bass JJ: Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 1997, 7 (9): 910-6.

    CAS  PubMed  Google Scholar 

  167. Ivey FM, Roth SM, Ferrell RE, Tracy BL, Lemmer JT, Hurlbut DE, Martel GF, Siegel EL, Fozard JL, Jeffrey Metter E, Fleg JL, Hurley BF: Effects of age, gender, and myostatin genotype on the hypertrophic response to heavy resistance strength training. J Gerontol A Biol Sci Med Sci. 2000, 55 (11): M641-8.

    CAS  PubMed  Article  Google Scholar 

  168. Carlson CJ, Booth FW, Gordon SE: Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol. 1999, 277 (2 Pt 2): R601-6.

    CAS  PubMed  Google Scholar 

  169. Willoughby DS: Effects of an alleged myostatin-binding supplement and heavy resistance training on serum myostatin, muscle strength and mass, and body composition. Int J Sport Nutr Exerc Metab. 2004, 14 (4): 461-72.

    CAS  PubMed  Google Scholar 

  170. Saremi A, Gharakhanloo R, Sharghi S, Gharaati MR, Larijani B, Omidfar K: Effects of oral creatine and resistance training on serum myostatin and GASP-1. Mol Cell Endocrinol. 2009

    Google Scholar 

  171. Green NR, Ferrando AA: Plasma boron and the effects of boron supplementation in males. Environ Health Perspect. 1994, 102 (Suppl 7): 73-7. 10.2307/3431966.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  172. Ferrando AA, Green NR: The effect of boron supplementation on lean body mass, plasma testosterone levels, and strength in male bodybuilders. Int J Sport Nutr. 1993, 3 (2): 140-9.

    CAS  PubMed  Google Scholar 

  173. Evans GW: The effect of chromium picolinate on insulin controlled parameters in humans. Int Biosc Med Res. 1989, 11: 163-80.

    Google Scholar 

  174. Hasten DL, Rome EP, Franks BD, Hegsted M: Effects of chromium picolinate on beginning weight training students. Int J Sport Nutr. 1992, 2 (4): 343-50.

    CAS  PubMed  Google Scholar 

  175. Grant KE, Chandler RM, Castle AL, Ivy JL: Chromium and exercise training: effect on obese women. Med Sci Sports Exerc. 1997, 29 (8): 992-8.

    CAS  PubMed  Article  Google Scholar 

  176. Campbell WW, Joseph LJ, Anderson RA, Davey SL, Hinton J, Evans WJ: Effects of resistive training and chromium picolinate on body composition and skeletal muscle size in older women. Int J Sport Nutr Exerc Metab. 2002, 12 (2): 125-35.

    CAS  PubMed  Google Scholar 

  177. Campbell WW, Joseph LJ, Davey SL, Cyr-Campbell D, Anderson RA, Evans WJ: Effects of resistance training and chromium picolinate on body composition and skeletal muscle in older men. J Appl Physiol. 1999, 86 (1): 29-39.

    CAS  PubMed  Google Scholar 

  178. Walker LS, Bemben MG, Bemben DA, Knehans AW: Chromium picolinate effects on body composition and muscular performance in wrestlers. Med Sci Sports Exerc. 1998, 30 (12): 1730-7. 10.1097/00005768-199812000-00012.

    CAS  PubMed  Article  Google Scholar 

  179. Livolsi JM, Adams GM, Laguna PL: The effect of chromium picolinate on muscular strength and body composition in women athletes. J Strength Cond Res. 2001, 15 (2): 161-6. 10.1519/1533-4287(2001)015<0161:TEOCPO>2.0.CO;2.

    CAS  PubMed  Google Scholar 

  180. Volpe SL, Huang HW, Larpadisorn K, Lesser II: Effect of chromium supplementation and exercise on body composition, resting metabolic rate and selected biochemical parameters in moderately obese women following an exercise program. J Am Coll Nutr. 2001, 20 (4): 293-306.

    CAS  PubMed  Article  Google Scholar 

  181. Hallmark MA, Reynolds TH, DeSouza CA, Dotson CO, Anderson RA, Rogers MA: Effects of chromium and resistive training on muscle strength and body composition. Med Sci Sports Exerc. 1996, 28 (1): 139-44. 10.1097/00005768-199601000-00025.

    CAS  PubMed  Article  Google Scholar 

  182. Lukaski HC, Bolonchuk WW, Siders WA, Milne DB: Chromium supplementation and resistance training: effects on body composition, strength, and trace element status of men. Am J Clin Nutr. 1996, 63 (6): 954-65.

    CAS  PubMed  Google Scholar 

  183. Clancy SP, Clarkson PM, DeCheke ME, Nosaka K, Freedson PS, Cunningham JJ, Valentine B: Effects of chromium picolinate supplementation on body composition, strength, and urinary chromium loss in football players. Int J Sport Nutr. 1994, 4 (2): 142-53.

    CAS  PubMed  Google Scholar 

  184. Pariza MW, Park Y, Cook ME: Conjugated linoleic acid and the control of cancer and obesity. Toxicol Sci. 1999, 52 (2 Suppl): 107-l10.

    CAS  PubMed  Article  Google Scholar 

  185. Pariza MW, Park Y, Cook ME: Mechanisms of action of conjugated linoleic acid: evidence and speculation. Proc Soc Exp Biol Med. 2000, 223 (1): 8-13. 10.1046/j.1525-1373.2000.22302.x.

    CAS  PubMed  Article  Google Scholar 

  186. Pariza MW, Park Y, Cook ME: The biologically active isomers of conjugated linoleic acid. Prog Lipid Res. 2001, 40 (4): 283-98. 10.1016/S0163-7827(01)00008-X.

    CAS  PubMed  Article  Google Scholar 

  187. DeLany JP, Blohm F, Truett AA, Scimeca JA, West DB: Conjugated linoleic acid rapidly reduces body fat content in mice without affecting energy intake. Am J Physiol. 1999, 276 (4 Pt 2): R1172-9.

    CAS  PubMed  Google Scholar 

  188. DeLany JP, West DB: Changes in body composition with conjugated linoleic acid. J Am Coll Nutr. 2000, 19 (4): 487S-93S.

    CAS  PubMed  Article  Google Scholar 

  189. Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW: Effect of conjugated linoleic acid on body composition in mice. Lipids. 1997, 32 (8): 853-8. 10.1007/s11745-997-0109-x.

    CAS  PubMed  Article  Google Scholar 

  190. Blankson H, Stakkestad JA, Fagertun H, Thom E, Wadstein J, Gudmundsen O: Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J Nutr. 2000, 130 (12): 2943-8.

    CAS  PubMed  Google Scholar 

  191. Gaullier JM, Berven G, Blankson H, Gudmundsen O: Clinical trial results support a preference for using CLA preparations enriched with two isomers rather than four isomers in human studies. Lipids. 2002, 37 (11): 1019-25. 10.1007/s11745-002-0995-y.

    CAS  PubMed  Article  Google Scholar 

  192. Pinkoski C, Chilibeck PD, Candow DG, Esliger D, Ewaschuk JB, Facci M, Farthing JP, Zello GA: The effects of conjugated linoleic acid supplementation during resistance training. Med Sci Sports Exerc. 2006, 38 (2): 339-48. 10.1249/01.mss.0000183860.42853.15.

    CAS  PubMed  Article  Google Scholar 

  193. Tarnopolsky M, Zimmer A, Paikin J, Safdar A, Aboud A, Pearce E, Roy B, Doherty T: Creatine monohydrate and conjugated linoleic acid improve strength and body composition following resistance exercise in older adults. PLoS One. 2007, 2 (10): e991-10.1371/journal.pone.0000991.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  194. Campbell B, Kreider RB: Conjugated linoleic acids. Curr Sports Med Rep. 2008, 7 (4): 237-41.

    PubMed  Article  Google Scholar 

  195. Wheeler KB, Garleb KA: Gamma oryzanol-plant sterol supplementation: metabolic, endocrine, and physiologic effects. Int J Sport Nutr. 1991, 1 (2): 170-7.

    CAS  PubMed  Google Scholar 

  196. Fry AC, Bonner E, Lewis DL, Johnson RL, Stone MH, Kraemer WJ: The effects of gamma-oryzanol supplementation during resistance exercise training. Int J Sport Nutr. 1997, 7 (4): 318-29.

    CAS  PubMed  Google Scholar 

  197. Bhasin S, Woodhouse L, Casaburi R, Singh AB, Mac RP, Lee M, Yarasheski KE, Sinha-Hikim I, Dzekov C, Dzekov J, Magliano L, Storer TW: Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J Clin Endocrinol Metab. 2005, 90 (2): 678-88. 10.1210/jc.2004-1184.

    CAS  PubMed  Article  Google Scholar 

  198. Kuhn CM: Anabolic steroids. Recent Prog Horm Res. 2002, 57: 411-34. 10.1210/rp.57.1.411.

    CAS  PubMed  Article  Google Scholar 

  199. Limbird TJ: Anabolic steroids in the training and treatment of athletes. Compr Ther. 1985, 11 (1): 25-30.

    CAS  PubMed  Google Scholar 

  200. Lukas SE: Current perspectives on anabolic-androgenic steroid abuse. Trends Pharmacol Sci. 1993, 14 (2): 61-8. 10.1016/0165-6147(93)90032-F.

    CAS  PubMed  Article  Google Scholar 

  201. Sattler FR, Castaneda-Sceppa C, Binder EF, Schroeder ET, Wang Y, Bhasin S, Kawakubo M, Stewart Y, Yarasheski KE, Ulloor J, Colletti P, Roubenoff R, Azen SP: Testosterone and growth hormone improve body composition and muscle performance in older men. J Clin Endocrinol Metab. 2009, 94 (6): 1991-2001. 10.1210/jc.2008-2338.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  202. Storer TW, Woodhouse L, Magliano L, Singh AB, Dzekov C, Dzekov J, Bhasin S: Changes in muscle mass, muscle strength, and power but not physical function are related to testosterone dose in healthy older men. J Am Geriatr Soc. 2008, 56 (11): 1991-9. 10.1111/j.1532-5415.2008.01927.x.

    PubMed Central  PubMed  Article  Google Scholar 

  203. Wagner JC: Enhancement of athletic performance with drugs. An overview. Sports Med. 1991, 12 (4): 250-65. 10.2165/00007256-199112040-00004.

    CAS  PubMed  Article  Google Scholar 

  204. Yarasheski KE: Growth hormone effects on metabolism, body composition, muscle mass, and strength. Exerc Sport Sci Rev. 1994, 22: 285-312. 10.1249/00003677-199401000-00013.

    CAS  PubMed  Article  Google Scholar 

  205. Smart T: Other therapies for wasting. GMHC Treat Issues. 1995, 9 (5): 7-8. 12

    Google Scholar 

  206. Casaburi R: Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Med Sci Sports Exerc. 2001, 33 (7 Suppl): S662-70.

    CAS  PubMed  Article  Google Scholar 

  207. Hayes VY, Urban RJ, Jiang J, Marcell TJ, Helgeson K, Mauras N: Recombinant human growth hormone and recombinant human insulin-like growth factor I diminish the catabolic effects of hypogonadism in man: metabolic and molecular effects. J Clin Endocrinol Metab. 2001, 86 (5): 2211-9. 10.1210/jc.86.5.2211.

    CAS  PubMed  Google Scholar 

  208. Newshan G, Leon W: The use of anabolic agents in HIV disease. Int J STD AIDS. 2001, 12 (3): 141-4. 10.1258/0956462011916893.

    CAS  PubMed  Article  Google Scholar 

  209. Tenover JS: Androgen replacement therapy to reverse and/or prevent age-associated sarcopenia in men. Baillieres Clin Endocrinol Metab. 1998, 12 (3): 419-25. 10.1016/S0950-351X(98)80153-5.

    CAS  PubMed  Article  Google Scholar 

  210. Bross R, Casaburi R, Storer TW, Bhasin S: Androgen effects on body composition and muscle function: implications for the use of androgens as anabolic agents in sarcopenic states. Baillieres Clin Endocrinol Metab. 1998, 12 (3): 365-78. 10.1016/S0950-351X(98)80077-3.

    CAS  PubMed  Article  Google Scholar 

  211. Casaburi R: Rationale for anabolic therapy to facilitate rehabilitation in chronic obstructive pulmonary disease. Baillieres Clin Endocrinol Metab. 1998, 12 (3): 407-18. 10.1016/S0950-351X(98)80134-1.

    CAS  PubMed  Article  Google Scholar 

  212. Johansen KL, Mulligan K, Schambelan M: Anabolic effects of nandrolone decanoate in patients receiving dialysis: a randomized controlled trial. Jama. 1999, 281 (14): 1275-81. 10.1001/jama.281.14.1275.

    CAS  PubMed  Article  Google Scholar 

  213. Sattler FR, Jaque SV, Schroeder ET, Olson C, Dube MP, Martinez C, Briggs W, Horton R, Azen S: Effects of pharmacological doses of nandrolone decanoate and progressive resistance training in immunodeficient patients infected with human immunodeficiency virus. J Clin Endocrinol Metab. 1999, 84 (4): 1268-76. 10.1210/jc.84.4.1268.

    CAS  PubMed  Google Scholar 

  214. Beiner JM, Jokl P, Cholewicki J, Panjabi MM: The effect of anabolic steroids and corticosteroids on healing of muscle contusion injury. Am J Sports Med. 1999, 27 (1): 2-9.

    CAS  PubMed  Google Scholar 

  215. Ferreira IM, Verreschi IT, Nery LE, Goldstein RS, Zamel N, Brooks D, Jardim JR: The influence of 6 months of oral anabolic steroids on body mass and respiratory muscles in undernourished COPD patients. Chest. 1998, 114 (1): 19-28. 10.1378/chest.114.1.19.

    CAS  PubMed  Article  Google Scholar 

  216. Bhasin S, Bremner WJ: Clinical review 85: Emerging issues in androgen replacement therapy. J Clin Endocrinol Metab. 1997, 82 (1): 3-8. 10.1210/jc.82.1.3.

    CAS  PubMed  Google Scholar 

  217. Hoffman JR, Kraemer WJ, Bhasin S, Storer T, Ratamess NA, Haff GG, Willoughby DS, Rogol AD: Position stand on androgen and human growth hormone use. J Strength Cond Res. 2009, 23 (5 Suppl): S1-S59.

    PubMed  Article  Google Scholar 

  218. Ferrando AA, Sheffield-Moore M, Paddon-Jones D, Wolfe RR, Urban RJ: Differential anabolic effects of testosterone and amino acid feeding in older men. J Clin Endocrinol Metab. 2003, 88 (1): 358-62. 10.1210/jc.2002-021041.

    CAS  PubMed  Article  Google Scholar 

  219. Meeuwsen IB, Samson MM, Duursma SA, Verhaar HJ: Muscle strength and tibolone: a randomised, double-blind, placebo-controlled trial. Bjog. 2002, 109 (1): 77-84.

    CAS  PubMed  Article  Google Scholar 

  220. King DS, Sharp RL, Vukovich MD, Brown GA, Reifenrath TA, Uhl NL, Parsons KA: Effect of oral androstenedione on serum testosterone and adaptations to resistance training in young men: a randomized controlled trial. Jama. 1999, 281 (21): 2020-8. 10.1001/jama.281.21.2020.

    CAS  PubMed  Article  Google Scholar 

  221. Carter WJ: Effect of anabolic hormones and insulin-like growth factor-I on muscle mass and strength in elderly persons. Clin Geriatr Med. 1995, 11 (4): 735-48.

    CAS  PubMed  Google Scholar 

  222. Soe M, Jensen KL, Gluud C: [The effect of anabolic androgenic steroids on muscle strength, body weight and lean body mass in body-building men]. Ugeskr Laeger. 1989, 151 (10): 610-3.

    CAS  PubMed  Google Scholar 

  223. Griggs RC, Pandya S, Florence JM, Brooke MH, Kingston W, Miller JP, Chutkow J, Herr BE, Moxley RT: Randomized controlled trial of testosterone in myotonic dystrophy. Neurology. 1989, 39 (2 Pt 1): 219-22.

    CAS  PubMed  Article  Google Scholar 

  224. Crist DM, Stackpole PJ, Peake GT: Effects of androgenic-anabolic steroids on neuromuscular power and body composition. J Appl Physiol. 1983, 54 (2): 366-70.

    CAS  PubMed  Google Scholar 

  225. Ward P: The effect of an anabolic steroid on strength and lean body mass. Med Sci Sports. 1973, 5 (4): 277-82.

    CAS  PubMed  Google Scholar 

  226. Varriale P, Mirzai-tehrane M, Sedighi A: Acute myocardial infarction associated with anabolic steroids in a young HIV-infected patient. Pharmacotherapy. 1999, 19 (7): 881-4. 10.1592/phco.19.10.881.31552.

    CAS  PubMed  Article  Google Scholar 

  227. Kibble MW, Ross MB: Adverse effects of anabolic steroids in athletes. Clin Pharm. 1987, 6 (9): 686-92.

    CAS  PubMed  Google Scholar 

  228. Gruber AJ, Pope HG: Psychiatric and medical effects of anabolic-androgenic steroid use in women. Psychother Psychosom. 2000, 69 (1): 19-26. 10.1159/000012362.

    CAS  PubMed  Article  Google Scholar 

  229. Lamb DR: Anabolic steroids in athletics: how well do they work and how dangerous are they? Am. J Sports Med. 1984, 12 (1): 31-8. 10.1177/036354658401200105.

    CAS  Article  Google Scholar 

  230. Salke RC, Rowland TW, Burke EJ: Left ventricular size and function in body builders using anabolic steroids. Med Sci Sports Exerc. 1985, 17 (6): 701-4. 10.1249/00005768-198512000-00014.

    CAS  PubMed  Article  Google Scholar 

  231. Brown GA, Martini ER, Roberts BS, Vukovich MD, King DS: Acute hormonal response to sublingual androstenediol intake in young men. J Appl Physiol. 2002, 92 (1): 142-6.

    CAS  PubMed  Google Scholar 

  232. Brown GA, McKenzie D: Acute resistance exercise does not change the hormonal response to sublingual androstenediol intake. Eur J Appl Physiol. 2006, 97 (4): 404-12. 10.1007/s00421-006-0194-9.

    CAS  PubMed  Article  Google Scholar 

  233. Broeder CE, Quindry J, Brittingham K, Panton L, Thomson J, Appakondu S, Breuel K, Byrd R, Douglas J, Earnest C, Mitchell C, Olson M, Roy T, Yarlagadda C: The Andro Project: physiological and hormonal influences of androstenedione supplementation in men 35 to 65 years old participating in a high-intensity resistance training program. Arch Intern Med. 2000, 160 (20): 3093-104. 10.1001/archinte.160.20.3093.

    CAS  PubMed  Article  Google Scholar 

  234. Ballantyne CS, Phillips SM, MacDonald JR, Tarnopolsky MA, MacDougall JD: The acute effects of androstenedione supplementation in healthy young males. Can J Appl Physiol. 2000, 25 (1): 68-78.

    CAS  PubMed  Article  Google Scholar 

  235. Brown GA, Vukovich MD, Sharp RL, Reifenrath TA, Parsons KA, King DS: Effect of oral DHEA on serum testosterone and adaptations to resistance training in young men. J Appl Physiol. 1999, 87 (6): 2274-83.

    CAS  PubMed  Google Scholar 

  236. van Gammeren D, Falk D, Antonio J: Effects of norandrostenedione and norandrostenediol in resistance-trained men. Nutrition. 2002, 18 (9): 734-7. 10.1016/S0899-9007(02)00834-1.

    CAS  PubMed  Article  Google Scholar 

  237. Van Gammeren D, Falk D, Antonio J: The effects of supplementation with 19-nor-4-androstene-3,17-dione and 19-nor-4-androstene-3,17-diol on body composition and athletic performance in previously weight-trained male athletes. Eur J Appl Physiol. 2001, 84 (5): 426-31. 10.1007/s004210100395.

    CAS  PubMed  Article  Google Scholar 

  238. Pipe A: Effects of testosterone precursor supplementation on intensive weight training. Clin J Sport Med. 2001, 11 (2): 126-10.1097/00042752-200104000-00014.

    CAS  PubMed  Article  Google Scholar 

  239. Mauras N, Lima J, Patel D, Rini A, di Salle E, Kwok A, Lippe B: Pharmacokinetics and dose finding of a potent aromatase inhibitor, aromasin (exemestane), in young males. J Clin Endocrinol Metab. 2003, 88 (12): 5951-6. 10.1210/jc.2003-031279.

    CAS  PubMed  Article  Google Scholar 

  240. Rohle D, Wilborn C, Taylor L, Mulligan C, Kreider R, Willoughby D: Effects of eight weeks of an alleged aromatase inhibiting nutritional supplement 6-OXO (androst-4-ene-3,6,17-trione) on serum hormone profiles and clinical safety markers in resistance-trained, eugonadal males. J Int Soc Sports Nutr. 2007, 4: 13-10.1186/1550-2783-4-13.

    PubMed Central  PubMed  Article  Google Scholar 

  241. Willoughby DS, Wilborn C, Taylor L, Campbell W: Eight weeks of aromatase inhibition using the nutritional supplement Novedex XT: effects in young, eugonadal men. Int J Sport Nutr Exerc Metab. 2007, 17 (1): 92-108.

    CAS  PubMed  Google Scholar 

  242. Antonio J, Uelmen J, Rodriguez R, Earnest C: The effects of Tribulus terrestris on body composition and exercise performance in resistance-trained males. Int J Sport Nutr Exerc Metab. 2000, 10 (2): 208-15.

    CAS  PubMed  Google Scholar 

  243. Brown GA, Vukovich MD, Martini ER, Kohut ML, Franke WD, Jackson DA, King DS: Effects of androstenedione-herbal supplementation on serum sex hormone concentrations in 30- to 59-year-old men. Int J Vitam Nutr Res. 2001, 71 (5): 293-301. 10.1024/0300-9831.71.5.293.

    CAS  PubMed  Article  Google Scholar 

  244. Rogerson S, Riches CJ, Jennings C, Weatherby RP, Meir RA, Marshall-Gradisnik SM: The effect of five weeks of Tribulus terrestris supplementation on muscle strength and body composition during preseason training in elite rugby league players. J Strength Cond Res. 2007, 21 (2): 348-53. 10.1519/R-18395.1.

    PubMed  Google Scholar 

  245. Cohen N, Halberstam M, Shlimovich P, Chang CJ, Shamoon H, Rossetti L: Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1995, 95 (6): 2501-9. 10.1172/JCI117951.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  246. Boden G, Chen X, Ruiz J, van Rossum GD, Turco S: Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism. 1996, 45 (9): 1130-5. 10.1016/S0026-0495(96)90013-X.

    CAS  PubMed  Article  Google Scholar 

  247. Halberstam M, Cohen N, Shlimovich P, Rossetti L, Shamoon H: Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes. 1996, 45 (5): 659-66. 10.2337/diabetes.45.5.659.

    CAS  PubMed  Article  Google Scholar 

  248. Fawcett JP, Farquhar SJ, Walker RJ, Thou T, Lowe G, Goulding A: The effect of oral vanadyl sulfate on body composition and performance in weight-training athletes. Int J Sport Nutr. 1996, 6 (4): 382-90.

    CAS  PubMed  Google Scholar 

  249. Fawcett JP, Farquhar SJ, Thou T, Shand BI: Oral vanadyl sulphate does not affect blood cells, viscosity or biochemistry in humans. Pharmacol Toxicol. 1997, 80 (4): 202-6. 10.1111/j.1600-0773.1997.tb00397.x.

    CAS  PubMed  Article  Google Scholar 

  250. Kreider R: New weight-control options. Func Foods Nutraceut. 2002, 34-42.

    Google Scholar 

  251. Hoie LH, Bruusgaard D, Thom E: Reduction of body mass and change in body composition on a very low calorie diet. Int J Obes Relat Metab Disord. 1993, 17 (1): 17-20.

    CAS  PubMed  Google Scholar 

  252. Bryner RW, Ullrich IH, Sauers J, Donley D, Hornsby G, Kolar M, Yeater R: Effects of resistance vs. aerobic training combined with an 800 calorie liquid diet on lean body mass and resting metabolic rate. J Am Coll Nutr. 1999, 18 (2): 115-21.

    CAS  PubMed  Article  Google Scholar 

  253. Meckling KA, Sherfey R: A randomized trial of a hypocaloric high-protein diet, with and without exercise, on weight loss, fitness, and markers of the Metabolic Syndrome in overweight and obese women. Appl Physiol Nutr Metab. 2007, 32 (4): 743-52. 10.1139/H07-059.

    CAS  PubMed  Article  Google Scholar 

  254. Aoyama T, Fukui K, Takamatsu K, Hashimoto Y, Yamamoto T: Soy protein isolate and its hydrolysate reduce body fat of dietary obese rats and genetically obese mice (yellow KK). Nutrition. 2000, 16 (5): 349-54. 10.1016/S0899-9007(00)00230-6.

    CAS  PubMed  Article  Google Scholar 

  255. Baba NH, Sawaya S, Torbay N, Habbal Z, Azar S, Hashim SA: High protein vs high carbohydrate hypoenergetic diet for the treatment of obese hyperinsulinemic subjects. Int J Obes Relat Metab Disord. 1999, 23 (11): 1202-6. 10.1038/sj.ijo.0801064.

    CAS  PubMed  Article  Google Scholar 

  256. Clifton P: High protein diets and weight control. Nutr Metab Cardiovasc Dis. 2009, 19 (6): 379-82. 10.1016/j.numecd.2009.02.011.

    CAS  PubMed  Article  Google Scholar 

  257. Heymsfield SB, van Mierlo CA, Knaap van der HC, Heo M, Frier HI: Weight management using a meal replacement strategy: meta and pooling analysis from six studies. Int J Obes Relat Metab Disord. 2003, 27 (5): 537-49. 10.1038/sj.ijo.0802258.

    CAS  PubMed  Article  Google Scholar 

  258. Skov AR, Toubro S, Ronn B, Holm L, Astrup A: Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity. Int J Obes Relat Metab Disord. 1999, 23 (5): 528-36. 10.1038/sj.ijo.0800867.

    CAS  PubMed  Article  Google Scholar 

  259. Toubro S, Astrup AV: [A randomized comparison of two weight-reducing diets. Calorie counting versus low-fat carbohydrate-rich ad libitum diet]. Ugeskr Laeger. 1998, 160 (6): 816-20.

    CAS  PubMed  Google Scholar 

  260. Wal JS, McBurney MI, Cho S, Dhurandhar NV: Ready-to-eat cereal products as meal replacements for weight loss. Int J Food Sci Nutr. 2007, 58 (5): 331-40. 10.1080/09637480701240802.

    PubMed  Article  Google Scholar 

  261. Reaven GM: Diet and Syndrome X. Curr Atheroscler Rep. 2000, 2 (6): 503-7. 10.1007/s11883-000-0050-z.

    CAS  PubMed  Article  Google Scholar 

  262. Treyzon L, Chen S, Hong K, Yan E, Carpenter CL, Thames G, Bowerman S, Wang HJ, Elashoff R, Li Z: A controlled trial of protein enrichment of meal replacements for weight reduction with retention of lean body mass. Nutr J. 2008, 7: 23-10.1186/1475-2891-7-23.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  263. Hasani-Ranjbar S, Nayebi N, Larijani B, Abdollahi M: A systematic review of the efficacy and safety of herbal medicines used in the treatment of obesity. World J Gastroenterol. 2009, 15 (25): 3073-85. 10.3748/wjg.15.3073.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  264. Greenway FL, De Jonge L, Blanchard D, Frisard M, Smith SR: Effect of a dietary herbal supplement containing caffeine and ephedra on weight, metabolic rate, and body composition. Obes Res. 2004, 12 (7): 1152-7. 10.1038/oby.2004.144.

    PubMed  Article  Google Scholar 

  265. Coffey CS, Steiner D, Baker BA, Allison DB: A randomized double-blind placebo-controlled clinical trial of a product containing ephedrine, caffeine, and other ingredients from herbal sources for treatment of overweight and obesity in the absence of lifestyle treatment. Int J Obes Relat Metab Disord. 2004, 28 (11): 1411-9. 10.1038/sj.ijo.0802784.

    CAS  PubMed  Article  Google Scholar 

  266. Boozer CN, Daly PA, Homel P, Solomon JL, Blanchard D, Nasser JA, Strauss R, Meredith T: Herbal ephedra/caffeine for weight loss: a 6-month randomized safety and efficacy trial. Int J Obes Relat Metab Disord. 2002, 26 (5): 593-604. 10.1038/sj.ijo.0802023.

    CAS  PubMed  Article  Google Scholar 

  267. Boozer C, Nasser J, SB H, Wang V, Chen G, Solomon J: An herbal supplement containing Ma Huang-Guarana for weight loss: a randomized, double-blind trial. Int J Obes Relat Metab Disord. 2001, 25: 316-24. 10.1038/sj.ijo.0801539.

    CAS  PubMed  Article  Google Scholar 

  268. Boozer C, Daly P, Homel P, Solomon J, Blanchard D, Nasser J, Strauss R, Merideth T: Herbal ephedra/caffeine for weight loss: a 6-month randomized safety and efficacy trial. Int J Obesity. 2002, 26: 593-604. 10.1038/sj.ijo.0802023.

    CAS  Article  Google Scholar 

  269. Molnar D, Torok K, Erhardt E, Jeges S: Safety and efficacy of treatment with an ephedrine/caffeine mixture. The first double-blind placebo-controlled pilot study in adolescents. Int J Obes Relat Metab Disord. 2000, 24 (12): 1573-8. 10.1038/sj.ijo.0801433.

    CAS  PubMed  Article  Google Scholar 

  270. Molnar D: Effects of ephedrine and aminophylline on resting energy expenditure in obese adolescents. Int J Obes Relat Metab Disord. 1993, 17 (Suppl 1): S49-52.

    PubMed  Google Scholar 

  271. Greenway FL: The safety and efficacy of pharmaceutical and herbal caffeine and ephedrine use as a weight loss agent. Obes Rev. 2001, 2 (3): 199-211. 10.1046/j.1467-789x.2001.00038.x.

    CAS  PubMed  Article  Google Scholar 

  272. Greenway F, Raum W, DeLany J: The effect of an herbal dietary supplement containing ephedrine and caffeine on oxygen consumption in humans. J Altern Complement Med. 2000, 6 (6): 553-5. 10.1089/acm.2000.6.553.

    CAS  PubMed  Article  Google Scholar 

  273. Greenway F, Herber D, Raum W, Morales S: Double-blind, randomized, placebo-controlled clinical trials with non-prescription medications for the treatment of obesity. Obes Res. 1999, 7 (4): 370-8.

    CAS  PubMed  Article  Google Scholar 

  274. Greenway FL, Ryan DH, Bray GA, Rood JC, Tucker EW, Smith SR: Pharmaceutical cost savings of treating obesity with weight loss medications. Obes Res. 1999, 7 (6): 523-31.

    CAS  PubMed  Article  Google Scholar 

  275. Hackman RM, Havel PJ, Schwartz HJ, Rutledge JC, Watnik MR, Noceti EM, Stohs SJ, Stern JS, Keen CL: Multinutrient supplement containing ephedra and caffeine causes weight loss and improves metabolic risk factors in obese women: a randomized controlled trial. Int J Obes (Lond). 2006, 30 (10): 1545-56. 10.1038/sj.ijo.0803283.

    CAS  Article  Google Scholar 

  276. Bent S, Tiedt T, Odden M, Shlipak M: The relative safety of ephedra compared with other herbal products. Ann Intern Med. 2003, 138: 468-471.

    PubMed  Article  Google Scholar 

  277. Fleming GA: The FDA, regulation, and the risk of stroke. N Engl J Med. 2000, 343 (25): 1886-7. 10.1056/NEJM200012213432510.

    CAS  PubMed  Article  Google Scholar 

  278. Anderson JW, Baird P, Davis RH, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL: Health benefits of dietary fiber. Nutr Rev. 2009, 67 (4): 188-205. 10.1111/j.1753-4887.2009.00189.x.

    PubMed  Article  Google Scholar 

  279. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, Golan R, Fraser D, Bolotin A, Vardi H, Tangi-Rozental O, Zuk-Ramot R, Sarusi B, Brickner D, Schwartz Z, Sheiner E, Marko R, Katorza E, Thiery J, Fiedler GM, Bluher M, Stumvoll M, Stampfer MJ: Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 2008, 359 (3): 229-41. 10.1056/NEJMoa0708681.

    CAS  PubMed  Article  Google Scholar 

  280. Raben A, Jensen ND, Marckmann P, Sandstrom B, Astrup AV: [Spontaneous weight loss in young subjects of normal weight after 11 weeks of unrestricted intake of a low-fat/high-fiber diet]. Ugeskr Laeger. 1997, 159 (10): 1448-53.

    CAS  PubMed  Google Scholar 

  281. Melanson KJ, Angelopoulos TJ, Nguyen VT, Martini M, Zukley L, Lowndes J, Dube TJ, Fiutem JJ, Yount BW, Rippe JM: Consumption of whole-grain cereals during weight loss: effects on dietary quality, dietary fiber, magnesium, vitamin B-6, and obesity. J Am Diet Assoc. 2006, 106 (9): 1380-8. 10.1016/j.jada.2006.06.003. quiz 9-90

    CAS  PubMed  Article  Google Scholar 

  282. Nieman DC, Cayea EJ, Austin MD, Henson DA, McAnulty SR, Jin F: Chia seed does not promote weight loss or alter disease risk factors in overweight adults. Nutr Res. 2009, 29 (6): 414-8. 10.1016/j.nutres.2009.05.011.

    CAS  PubMed  Article  Google Scholar 

  283. Saltzman E, Moriguti JC, Das SK, Corrales A, Fuss P, Greenberg AS, Roberts SB: Effects of a cereal rich in soluble fiber on body composition and dietary compliance during consumption of a hypocaloric diet. J Am Coll Nutr. 2001, 20 (1): 50-7.

    CAS  PubMed  Article  Google Scholar 

  284. Sartorelli DS, Franco LJ, Cardoso MA: High intake of fruits and vegetables predicts weight loss in Brazilian overweight adults. Nutr Res. 2008, 28 (4): 233-8. 10.1016/j.nutres.2008.02.004.

    CAS  PubMed  Article  Google Scholar 

  285. Barr SI: Increased dairy product or calcium intake: is body weight or composition affected in humans?. J Nutr. 2003, 133 (1): 245S-8S.

    PubMed  Google Scholar 

  286. Lanou AJ, Barnard ND: Dairy and weight loss hypothesis: an evaluation of the clinical trials. Nutr Rev. 2008, 66 (5): 272-9. 10.1111/j.1753-4887.2008.00032.x.

    PubMed  Article  Google Scholar 

  287. Menon VB, Baxmann AC, Froeder L, Martini LA, Heilberg IP: Effects of calcium supplementation on body weight reduction in overweight calcium stone formers. Urol Res. 2009, 37 (3): 133-9. 10.1007/s00240-009-0187-3.

    CAS  PubMed  Article  Google Scholar 

  288. Shapses SA, Heshka S, Heymsfield SB: Effect of calcium supplementation on weight and fat loss in women. J Clin Endocrinol Metab. 2004, 89 (2): 632-7. 10.1210/jc.2002-021136.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  289. Wagner G, Kindrick S, Hertzler S, DiSilvestro RA: Effects of various forms of calcium on body weight and bone turnover markers in women participating in a weight loss program. J Am Coll Nutr. 2007, 26 (5): 456-61.

    CAS  PubMed  Article  Google Scholar 

  290. Yanovski JA, Parikh SJ, Yanoff LB, Denkinger BI, Calis KA, Reynolds JC, Sebring NG, McHugh T: Effects of calcium supplementation on body weight and adiposity in overweight and obese adults: a randomized trial. Ann Intern Med. 2009, 150 (12): 821-9. W145-6

    PubMed Central  PubMed  Article  Google Scholar 

  291. Zemel M, Thompson W, Zemel P, Nocton A, Milstead A, Morris K, Campbell P: Dietary calcium and dairy products accelerate weight and fat-loss during energy restriction in obese adults. Clin Nutri. 2002, 75-

    Google Scholar 

  292. Zemel MB: Role of dietary calcium and dairy products in modulating adiposity. Lipids. 2003, 38 (2): 139-46. 10.1007/s11745-003-1044-6.

    CAS  PubMed  Article  Google Scholar 

  293. Zemel MB: Regulation of adiposity and obesity risk by dietary calcium: mechanisms and implications. J Am Coll Nutr. 2002, 21 (2): 146S-51S.

    CAS  PubMed  Article  Google Scholar 

  294. Zemel MB: Mechanisms of dairy modulation of adiposity. J Nutr. 2003, 133 (1): 252S-6S.

    PubMed  Google Scholar 

  295. Zemel MB, Shi H, Greer B, Dirienzo D, Zemel PC: Regulation of adiposity by dietary calcium. Faseb J. 2000, 14 (9): 1132-8.

    CAS  PubMed  Google Scholar 

  296. Davies KM, Heaney RP, Recker RR, Lappe JM, Barger-Lux MJ, Rafferty K, Hinders S: Calcium intake and body weight. J Clin Endocrinol Metab. 2000, 85 (12): 4635-8. 10.1210/jc.85.12.4635.

    CAS  PubMed  Google Scholar 

  297. Sarma DN, Barrett ML, Chavez ML, Gardiner P, Ko R, Mahady GB, Marles RJ, Pellicore LS, Giancaspro GI, Low Dog T: Safety of green tea extracts: a systematic review by the US Pharmacopeia. Drug Saf. 2008, 31 (6): 469-84. 10.2165/00002018-200831060-00003.

    PubMed  Article  Google Scholar 

  298. Nagle DG, Ferreira D, Zhou YD: Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry. 2006, 67 (17): 1849-55. 10.1016/j.phytochem.2006.06.020.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  299. Shixian Q, VanCrey B, Shi J, Kakuda Y, Jiang Y: Green tea extract thermogenesis-induced weight loss by epigallocatechin gallate inhibition of catechol-O-methyltransferase. J Med Food. 2006, 9 (4): 451-8. 10.1089/jmf.2006.9.451.

    CAS  PubMed  Article  Google Scholar 

  300. Nakagawa K, Ninomiya M, Okubo T, Aoi N, Juneja LR, Kim M, Yamanaka K, Miyazawa T: Tea catechin supplementation increases antioxidant capacity and prevents phospholipid hydroperoxidation in plasma of humans. J Agric Food Chem. 1999, 47 (10): 3967-73. 10.1021/jf981195l.

    CAS  PubMed  Article  Google Scholar 

  301. Dulloo A, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, Chantre P, Vandermander J: Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr. 2000, 70 (6): 1040-5.

    Google Scholar 

  302. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, Chantre P, Vandermander J: Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr. 1999, 70 (6): 1040-5.

    CAS  PubMed  Google Scholar 

  303. Di Pierro F, Menghi AB, Barreca A, Lucarelli M, Calandrelli A: Greenselect Phytosome as an adjunct to a low-calorie diet for treatment of obesity: a clinical trial. Altern Med Rev. 2009, 14 (2): 154-60.

    PubMed  Google Scholar 

  304. Maki KC, Reeves MS, Farmer M, Yasunaga K, Matsuo N, Katsuragi Y, Komikado M, Tokimitsu I, Wilder D, Jones F, Blumberg JB, Cartwright Y: Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults. J Nutr. 2009, 139 (2): 264-70.

    CAS  PubMed  Article  Google Scholar 

  305. Fallon E, Zhong L, Furne JK, Levitt M: A mixture of extracts of black and green teas and mulberry leaf did not reduce weight gain in rats fed a high-fat diet. Altern Med Rev. 2008, 13 (1): 43-9.

    PubMed  Google Scholar 

  306. Hsu CH, Tsai TH, Kao YH, Hwang KC, Tseng TY, Chou P: Effect of green tea extract on obese women: a randomized, double-blind, placebo-controlled clinical trial. Clin Nutr. 2008, 27 (3): 363-70. 10.1016/j.clnu.2008.03.007.

    CAS  PubMed  Article  Google Scholar 

  307. MacDonald HB: Conjugated linoleic acid and disease prevention: a review of current knowledge. J Am Coll Nutr. 2000, 19 (2 Suppl): 111S-8S.

    CAS  PubMed  Article  Google Scholar 

  308. Park Y, Albright KJ, Storkson JM, Liu W, Cook ME, Pariza MW: Changes in body composition in mice during feeding and withdrawal of conjugated linoleic acid. Lipids. 1999, 34 (3): 243-8. 10.1007/s11745-999-0359-7.

    CAS  PubMed  Article  Google Scholar 

  309. Colakoglu S, Colakoglu M, Taneli F, Cetinoz F, Turkmen M: Cumulative effects of conjugated linoleic acid and exercise on endurance development, body composition, serum leptin and insulin levels. J Sports Med Phys Fitness. 2006, 46 (4): 570-7.

    CAS  PubMed  Google Scholar 

  310. Lowery LM, Appicelli PA, PWR L: Conjugated linoleic acid enhances muscle size and strength gains in novice bodybuilders. Med Sci Sports Exerc. 1998, 30 (5): S182-

    Article  Google Scholar 

  311. Riserus U, Arner P, Brismar K, Vessby B: Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care. 2002, 25 (9): 1516-21. 10.2337/diacare.25.9.1516.

    CAS  PubMed  Article  Google Scholar 

  312. Riserus U, Basu S, Jovinge S, Fredrikson GN, Arnlov J, Vessby B: Supplementation with conjugated linoleic acid causes isomer-dependent oxidative stress and elevated C-reactive protein: a potential link to fatty acid-induced insulin resistance. Circulation. 2002, 106 (15): 1925-9. 10.1161/01.CIR.0000033589.15413.48.

    CAS  PubMed  Article  Google Scholar 

  313. Riserus U, Berglund L, Vessby B: Conjugated linoleic acid (CLA) reduced abdominal adipose tissue in obese middle-aged men with signs of the metabolic syndrome: a randomised controlled trial. Int J Obes Relat Metab Disord. 2001, 25 (8): 1129-35. 10.1038/sj.ijo.0801659.

    CAS  PubMed  Article  Google Scholar 

  314. Thom E, Wadstein J, Gudmundsen O: Conjugated linoleic acid reduces body fat in healthy exercising humans. J Int Med Res. 2001, 29 (5): 392-6.

    CAS  PubMed  Article  Google Scholar 

  315. Cornish SM, Candow DG, Jantz NT, Chilibeck PD, Little JP, Forbes S, Abeysekara S, Zello GA: Conjugated linoleic acid combined with creatine monohydrate and whey protein supplementation during strength training. Int J Sport Nutr Exerc Metab. 2009, 19 (1): 79-96.

    CAS  PubMed  Google Scholar 

  316. Beuker F, Haak H, Schwietz H, editors: CLA and body styling. Symposium: Vitamine und Zusatzstoffe; Jena (Thhr.). 1999

  317. Kreider RB, Ferreira MP, Greenwood M, Wilson M, Almada AL: Effects of conjugated linoleic acid supplementation during resistance training on body composition, bone density, strength, and selected hematological markers. J Strength Cond Res. 2002, 16 (3): 325-34. 10.1519/1533-4287(2002)016<0325:EOCLAS>2.0.CO;2.

    PubMed  Google Scholar 

  318. Malpuech-Brugere C, Verboeket-van de Venne WP, Mensink RP, Arnal MA, Morio B, Brandolini M, Saebo A, Lassel TS, Chardigny JM, Sebedio JL, Beaufrere B: Effects of two conjugated linoleic Acid isomers on body fat mass in overweight humans. Obes Res. 2004, 12 (4): 591-8. 10.1038/oby.2004.68.

    CAS  PubMed  Article  Google Scholar 

  319. Medina EA, Horn WF, Keim NL, Havel PJ, Benito P, Kelley DS, Nelson GJ, Erickson KL: Conjugated linoleic acid supplementation in humans: effects on circulating leptin concentrations and appetite. Lipids. 2000, 35 (7): 783-8. 10.1007/s11745-000-0586-y.

    CAS  PubMed  Article  Google Scholar 

  320. Salas-Salvado J, Marquez-Sandoval F, Bullo M: Conjugated linoleic acid intake in humans: a systematic review focusing on its effect on body composition, glucose, and lipid metabolism. Crit Rev Food Sci Nutr. 2006, 46 (6): 479-88. 10.1080/10408390600723953.

    CAS  PubMed  Article  Google Scholar 

  321. Von Loeffelholz C: Influence of conjugated linoleic acid (CLA) supplementation on body composition and strength in bodybuilders. Jena (Thnr). 1999, 7: 238-43.

    Google Scholar 

  322. Wang Y, Jones PJ: Dietary conjugated linoleic acid and body composition. Am J Clin Nutr. 2004, 79 (6 Suppl): 1153S-8S.

    CAS  PubMed  Google Scholar 

  323. Wang YW, Jones PJ: Conjugated linoleic acid and obesity control: efficacy and mechanisms. Int J Obes Relat Metab Disord. 2004, 28 (8): 941-55. 10.1038/sj.ijo.0802641.

    CAS  PubMed  Article  Google Scholar 

  324. Zambell KL, Keim NL, Van Loan MD, Gale B, Benito P, Kelley DS, Nelson GJ: Conjugated linoleic acid supplementation in humans: effects on body composition and energy expenditure. Lipids. 2000, 35 (7): 777-82. 10.1007/s11745-000-0585-z.

    CAS  PubMed  Article  Google Scholar 

  325. Sneddon AA, Tsofliou F, Fyfe CL, Matheson I, Jackson DM, Horgan G, Winzell MS, Wahle KW, Ahren B, Williams LM: Effect of a conjugated linoleic acid and omega-3 fatty acid mixture on body composition and adiponectin. Obesity (Silver Spring). 2008, 16 (5): 1019-24. 10.1038/oby.2008.41.

    CAS  Article  Google Scholar 

  326. Shigematsu N, Asano R, Shimosaka M, Okazaki M: Effect of administration with the extract of Gymnema sylvestre R. Br leaves on lipid metabolism in rats. Biol Pharm Bull. 2001, 24 (6): 713-7. 10.1248/bpb.24.713.

    CAS  PubMed  Article  Google Scholar 

  327. Shigematsu N, Asano R, Shimosaka M, Okazaki M: Effect of long term-administration with Gymnema sylvestre R. BR on plasma and liver lipid in rats. Biol Pharm Bull. 2001, 24 (6): 643-9. 10.1248/bpb.24.643.

    CAS  PubMed  Article  Google Scholar 

  328. Luo H, Kashiwagi A, Shibahara T, Yamada K: Decreased bodyweight without rebound and regulated lipoprotein metabolism by gymnemate in genetic multifactor syndrome animal. Mol Cell Biochem. 2007, 299 (1-2): 93-8. 10.1007/s11010-005-9049-7.

    CAS  PubMed  Article  Google Scholar 

  329. Preuss HG, Rao CV, Garis R, Bramble JD, Ohia SE, Bagchi M, Bagchi D: An overview of the safety and efficacy of a novel, natural(-)-hydroxycitric acid extract (HCA-SX) for weight management. J Med. 2004, 35 (1-6): 33-48.

    CAS  PubMed  Google Scholar 

  330. Garcia Neto M, Pesti GM, Bakalli RI: Influence of dietary protein level on the broiler chicken's response to methionine and betaine supplements. Poult Sci. 2000, 79 (10): 1478-84.

    CAS  PubMed  Article  Google Scholar 

  331. Schwab U, Torronen A, Toppinen L, Alfthan G, Saarinen M, Aro A, Uusitupa M: Betaine supplementation decreases plasma homocysteine concentrations but does not affect body weight, body composition, or resting energy expenditure in human subjects. Am J Clin Nutr. 2002, 76 (5): 961-7.

    CAS  PubMed  Google Scholar 

  332. Hoffman JR, Ratamess NA, Kang J, Rashti SL, Faigenbaum AD: Effect of betaine supplementation on power performance and fatigue. J Int Soc Sports Nutr. 2009, 6: 7-10.1186/1550-2783-6-7.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  333. Ammon HP, Muller AB: Forskolin: from an ayurvedic remedy to a modern agent. Planta Med. 1985, 473-7. 10.1055/s-2007-969566. 6

  334. Ammon HP, Muller AB: Effect of forskolin on islet cyclic AMP, insulin secretion, blood glucose and intravenous glucose tolerance in rats. Naunyn Schmiedebergs Arch Pharmacol. 1984, 326 (4): 364-7. 10.1007/BF00501444.

    CAS  PubMed  Article  Google Scholar 

  335. de Souza NJ, Dohadwalla AN, Reden J: Forskolin: a labdane diterpenoid with antihypertensive, positive inotropic, platelet aggregation inhibitory, and adenylate cyclase activating properties. Med Res Rev. 1983, 3 (2): 201-19. 10.1002/med.2610030205.

    CAS  PubMed  Article  Google Scholar 

  336. Litosch I, Hudson TH, Mills I, Li SY, Fain JN: Forskolin as an activator of cyclic AMP accumulation and lipolysis in rat adipocytes. Mol Pharmacol. 1982, 22 (1): 109-15.

    CAS  PubMed  Google Scholar 

  337. Litosch I, Saito Y, Fain JN: Forskolin as an activator of cyclic AMP accumulation and secretion in blowfly salivary glands. Biochem J. 1982, 204 (1): 147-51.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  338. Seamon KB, Padgett W, Daly JW: Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci USA. 1981, 78 (6): 3363-7. 10.1073/pnas.78.6.3363.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  339. Henderson S, Magu B, Rasmussen C, Lancaster S, Kerksick C, Smith P, Melton C, Cowan P, Greenwood M, Earnest C, Almada A, Milnor P, Magrans T, Bowden R, Ounpraseuth S, Thomas A, Kreider RB: Effects of coleus forskohlii supplementation on body composition and hematological profiles in mildly overweight women. J Int Soc Sports Nutr. 2005, 2: 54-62. 10.1186/1550-2783-2-2-54.

    PubMed Central  PubMed  Article  Google Scholar 

  340. Godard MP, Johnson BA, Richmond SR: Body composition and hormonal adaptations associated with forskolin consumption in overweight and obese men. Obes Res. 2005, 13 (8): 1335-43. 10.1038/oby.2005.162.

    CAS  PubMed  Article  Google Scholar 

  341. Kreider RB, Henderson S, Magu B, Rasmussen C, Lancaster S, Kerksick C, Smith P, Melton C, Cowan P, Greenwood M, Earnest C, Almada A, Milnor P: Effects of coleus forskohlii supplementation on body composition and markers of health in sedentary overweight females. FASEB J. 2002, LB59-

    Google Scholar 

  342. Ebeling P, Koivisto VA: Physiological importance of dehydroepiandrosterone. Lancet. 1994, 343 (8911): 1479-81. 10.1016/S0140-6736(94)92587-9.

    CAS  PubMed  Article  Google Scholar 

  343. Denti L, Pasolini G, Sanfelici L, Ablondi F, Freddi M, Benedetti R, Valenti G: Effects of aging on dehydroepiandrosterone sulfate in relation to fasting insulin levels and body composition assessed by bioimpedance analysis. Metabolism. 1997, 46 (7): 826-32. 10.1016/S0026-0495(97)90130-X.

    CAS  PubMed  Article  Google Scholar 

  344. De Pergola G, Zamboni M, Sciaraffia M, Turcato E, Pannacciulli N, Armellini F, Giorgino F, Perrini S, Bosello O, Giorgino R: Body fat accumulation is possibly responsible for lower dehydroepiandrosterone circulating levels in premenopausal obese women. Int J Obes Relat Metab Disord. 1996, 20 (12): 1105-10.

    CAS  PubMed  Google Scholar 

  345. Nestler JE, Barlascini CO, Clore JN, Blackard WG: Dehydroepiandrosterone reduces serum low density lipoprotein levels and body fat but does not alter insulin sensitivity in normal men. J Clin Endocrinol Metab. 1988, 66 (1): 57-61. 10.1210/jcem-66-1-57.

    CAS  PubMed  Article  Google Scholar 

  346. Vogiatzi MG, Boeck MA, Vlachopapadopoulou E, el-Rashid R, New MI: Dehydroepiandrosterone in morbidly obese adolescents: effects on weight, body composition, lipids, and insulin resistance. Metabolism. 1996, 45 (8): 1011-5. 10.1016/S0026-0495(96)90272-3.

    CAS  PubMed  Article  Google Scholar 

  347. von Muhlen D, Laughlin GA, Kritz-Silverstein D, Bergstrom J, Bettencourt R: Effect of dehydroepiandrosterone supplementation on bone mineral density, bone markers, and body composition in older adults: the DAWN trial. Osteoporos Int. 2008, 19 (5): 699-707. 10.1007/s00198-007-0520-z.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  348. Kalman DS, Colker CM, Swain MA, Torina GC, Shi Q: A randomized double-blind, placebo-controlled study of 3-acetyl-7-oxo-dehydroepiandrosterone in healthy overweight adults. Curr Thera. 2000, 61: 435-42. 10.1016/S0011-393X(00)80026-0.

    CAS  Article  Google Scholar 

  349. Zenk JL, Frestedt JL, Kuskowski MA: HUM5007, a novel combination of thermogenic compounds, and 3-acetyl-7-oxo-dehydroepiandrosterone: each increases the resting metabolic rate of overweight adults. J Nutr Biochem. 2007, 18 (9): 629-34. 10.1016/j.jnutbio.2006.11.008.

    CAS  PubMed  Article  Google Scholar 

  350. Zenk JL, Leikam SA, Kassen LJ, Kuskowski MA: Effect of lean system 7 on metabolic rate and body composition. Nutrition. 2005, 21 (2): 179-85. 10.1016/j.nut.2004.05.025.

    PubMed  Article  Google Scholar 

  351. Stanko RT, Arch JE: Inhibition of regain in body weight and fat with addition of 3-carbon compounds to the diet with hyperenergetic refeeding after weight reduction. Int J Obes Relat Metab Disord. 1996, 20 (10): 925-30.

    CAS  PubMed  Google Scholar 

  352. Stanko RT, Tietze DL, Arch JE: Body composition, energy utilization, and nitrogen metabolism with a severely restricted diet supplemented with dihydroxyacetone and pyruvate. Am J Clin Nutr. 1992, 55 (4): 771-6.

    CAS  PubMed  Google Scholar 

  353. Stanko RT, Reynolds HR, Hoyson R, Janosky JE, Wolf R: Pyruvate supplementation of a low-cholesterol, low-fat diet: effects on plasma lipid concentrations and body composition in hyperlipidemic patients. Am J Clin Nutr. 1994, 59 (2): 423-7.

    CAS  PubMed  Google Scholar 

  354. Kalman D, Colker CM, Wilets I, Roufs JB, Antonio J: The effects of pyruvate supplementation on body composition in overweight individuals. Nutrition. 1999, 15 (5): 337-40. 10.1016/S0899-9007(99)00034-9.

    CAS  PubMed  Article  Google Scholar 

  355. Stone MH, Sanborn K, Smith LL, O'Bryant HS, Hoke T, Utter AC, Johnson RL, Boros R, Hruby J, Pierce KC, Stone ME, Garner B: Effects of in-season (5 weeks) creatine and pyruvate supplementation on anaerobic performance and body composition in American football players. Int J Sport Nutr. 1999, 9 (2): 146-65.

    CAS  PubMed  Google Scholar 

  356. Koh-Banerjee PK, Ferreira MP, Greenwood M, Bowden RG, Cowan PN, Almada AL, Kreider RB: Effects of calcium pyruvate supplementation during training on body composition, exercise capacity, and metabolic responses to exercise. Nutrition. 2005, 21 (3): 312-9. 10.1016/j.nut.2004.06.026.

    CAS  PubMed  Article  Google Scholar 

  357. Gallaher DD, Gallaher CM, Mahrt GJ, Carr TP, Hollingshead CH, Hesslink R, Wise J: A glucomannan and chitosan fiber supplement decreases plasma cholesterol and increases cholesterol excretion in overweight normocholesterolemic humans. J Am Coll Nutr. 2002, 21 (5): 428-33.

    CAS  PubMed  Article  Google Scholar 

  358. Gallaher CM, Munion J, Hesslink R, Wise J, Gallaher DD: Cholesterol reduction by glucomannan and chitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion in rats. J Nutr. 2000, 130 (11): 2753-9.

    CAS  PubMed  Google Scholar 

  359. Chiang MT, Yao HT, Chen HC: Effect of dietary chitosans with different viscosity on plasma lipids and lipid peroxidation in rats fed on a diet enriched with cholesterol. Biosci Biotechnol Biochem. 2000, 64 (5): 965-71. 10.1271/bbb.64.965.

    CAS  PubMed  Article  Google Scholar 

  360. Tai TS, Sheu WH, Lee WJ, Yao HT, Chiang MT: Effect of chitosan on plasma lipoprotein concentrations in type 2 diabetic subjects with hypercholesterolemia. Diabetes Care. 2000, 23 (11): 1703-4. 10.2337/diacare.23.11.1703a.

    CAS  PubMed  Article  Google Scholar 

  361. Wuolijoki E, Hirvela T, Ylitalo P: Decrease in serum LDL cholesterol with microcrystalline chitosan. Methods Find Exp Clin Pharmacol. 1999, 21 (5): 357-61. 10.1358/mf.1999.21.5.793477.

    CAS  PubMed  Article  Google Scholar 

  362. Gades MD, Stern JS: Chitosan supplementation and fecal fat excretion in men. Obes Res. 2003, 11 (5): 683-8. 10.1038/oby.2003.97.

    CAS  PubMed  Article  Google Scholar 

  363. Guerciolini R, Radu-Radulescu L, Boldrin M, Dallas J, Moore R: Comparative evaluation of fecal fat excretion induced by orlistat and chitosan. Obes Res. 2001, 9 (6): 364-7. 10.1038/oby.2001.47.

    CAS  PubMed  Article  Google Scholar 

  364. Gades MD, Stern JS: Chitosan supplementation and fat absorption in men and women. J Am Diet Assoc. 2005, 105 (1): 72-7. 10.1016/j.jada.2004.10.004.

    CAS  PubMed  Article  Google Scholar 

  365. Pittler MH, Abbot NC, Harkness EF, Ernst E: Randomized, double-blind trial of chitosan for body weight reduction. Eur J Clin Nutr. 1999, 53 (5): 379-81. 10.1038/sj.ejcn.1600733.

    CAS  PubMed  Article  Google Scholar 

  366. Ho SC, Tai ES, Eng PH, Tan CE, Fok AC: In the absence of dietary surveillance, chitosan does not reduce plasma lipids or obesity in hypercholesterolaemic obese Asian subjects. Singapore Med J. 2001, 42 (1): 006-10.

    CAS  Google Scholar 

  367. Vincent J: The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent. Sports Med. 2003, 33 (3): 213-30. 10.2165/00007256-200333030-00004.

    PubMed  Article  Google Scholar 

  368. Lukaski HC, Siders WA, Penland JG: Chromium picolinate supplementation in women: effects on body weight, composition, and iron status. Nutrition. 2007, 23 (3): 187-95. 10.1016/j.nut.2006.12.001.

    CAS  PubMed  Article  Google Scholar 

  369. Jena BS, Jayaprakasha GK, Singh RP, Sakariah KK: Chemistry and biochemistry of (-)-hydroxycitric acid from Garcinia. J Agric Food Chem. 2002, 50 (1): 10-22. 10.1021/jf010753k.

    CAS  PubMed  Article  Google Scholar 

  370. Ishihara K, Oyaizu S, Onuki K, Lim K, Fushiki T: Chronic (-)-hydroxycitrate administration spares carbohydrate utilization and promotes lipid oxidation during exercise in mice. J Nutr. 2000, 130 (12): 2990-5.

    CAS  PubMed  Google Scholar 

  371. Kriketos AD, Thompson HR, Greene H, Hill JO: (-)-Hydroxycitric acid does not affect energy expenditure and substrate oxidation in adult males in a post-absorptive state. Int J Obes Relat Metab Disord. 1999, 23 (8): 867-73. 10.1038/sj.ijo.0800965.

    CAS  PubMed  Article  Google Scholar 

  372. Heymsfield SB, Allison DB, Vasselli JR, Pietrobelli A, Greenfield D, Nunez C: Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. Jama. 1998, 280 (18): 1596-600. 10.1001/jama.280.18.1596.

    CAS  PubMed  Article  Google Scholar 

  373. Mattes RD, Bormann L: Effects of (-)-hydroxycitric acid on appetitive variables. Physiol Behav. 2000, 71 (1-2): 87-94. 10.1016/S0031-9384(00)00321-8.

    CAS  PubMed  Article  Google Scholar 

  374. Kraemer WJ, Volek JS, Dunn-Lewis C: L-carnitine supplementation: influence upon physiological function. Curr Sports Med Rep. 2008, 7 (4): 218-23.

    PubMed  Article  Google Scholar 

  375. Smith WA, Fry AC, Tschume LC, Bloomer RJ: Effect of glycine propionyl-L-carnitine on aerobic and anaerobic exercise performance. Int J Sport Nutr Exerc Metab. 2008, 18 (1): 19-36.

    CAS  PubMed  Google Scholar 

  376. Brass EP: Supplemental carnitine and exercise. Am J Clin Nutr. 2000, 72 (2 Suppl): 618S-23S.

    CAS  PubMed  Google Scholar 

  377. Villani RG, Gannon J, Self M, Rich PA: L-Carnitine supplementation combined with aerobic training does not promote weight loss in moderately obese women. Int J Sport Nutr Exerc Metab. 2000, 10 (2): 199-207.

    CAS  PubMed  Google Scholar 

  378. Bloomer RJ, Smith WA: Oxidative stress in response to aerobic and anaerobic power testing: influence of exercise training and carnitine supplementation. Res Sports Med. 2009, 17 (1): 1-16. 10.1080/15438620802678289.

    PubMed  Article  Google Scholar 

  379. Volek JS, Kraemer WJ, Rubin MR, Gomez AL, Ratamess NA, Gaynor P: L-Carnitine L-tartrate supplementation favorably affects markers of recovery from exercise stress. Am J Physiol Endocrinol Metab. 2002, 282 (2): E474-82.

    CAS  PubMed  Article  Google Scholar 

  380. Kaciuba-Uscilko H, Nazar K, Chwalbinska-Moneta J, Ziemba A, Kruk B, Szczepanik J, Titow-Stupnicka E, Bicz B: Effect of phosphate supplementation on metabolic and neuroendocrine responses to exercise and oral glucose load in obese women during weight reduction. J Physiol Pharmacol. 1993, 44 (4): 425-40.

    PubMed  Google Scholar 

  381. Nazar K, Kaciuba-Uscilko H, Szczepanik J, Zemba AW, Kruk B, Chwalbinska-Moneta J, Titow-Stupnicka E, Bicz B, Krotkiewski M: Phosphate supplementation prevents a decrease of triiodothyronine and increases resting metabolic rate during low energy diet. J Physiol Pharmacol. 1996, 47 (2): 373-83.

    CAS  PubMed  Google Scholar 

  382. Grases F, Llompart I, Conte A, Coll R, March JG: Glycosaminoglycans and oxalocalcic urolithiasis. Nephron. 1994, 68 (4): 449-53. 10.1159/000188306.

    CAS  PubMed  Article  Google Scholar 

  383. Grases F, Melero G, Costa-Bauza A, Prieto R, March JG: Urolithiasis and phytotherapy. Int Urol Nephrol. 1994, 26 (5): 507-11. 10.1007/BF02767650.

    CAS  PubMed  Article  Google Scholar 

  384. Dolan RL, Crosby EC, Leutkemeir MJ, Barton RG, Askew EW: The effects of diuretics on resting metabolic rate and subsequent shifts in respiratory exchange ratios. Med Sci Sports Exerc. 2001, 33: S163-10.1097/00005768-200105001-00921.

    Article  Google Scholar 

  385. Crosby EC, Dolan RL, Benson JE, Leutkemeir MJ, Barton RG, Askew EW: Herbal diuretic induced dehydration and resting metabolic rate. Med Sci Sports Exerc. 2001, 33: S163-10.1097/00005768-200105001-00920.

    Article  Google Scholar 

  386. Von Duvillard SP, Braun WA, Markofski M, Beneke R, Leithauser R: Fluids and hydration in prolonged endurance performance. Nutrition. 2004, 20 (7-8): 651-6. 10.1016/j.nut.2004.04.011.

    CAS  PubMed  Article  Google Scholar 

  387. von Duvillard SP, Arciero PJ, Tietjen-Smith T, Alford K: Sports drinks, exercise training, and competition. Curr Sports Med Rep. 2008, 7 (4): 202-8.

    PubMed  Article  Google Scholar 

  388. Winnick JJ, Davis JM, Welsh RS, Carmichael MD, Murphy EA, Blackmon JA: Carbohydrate feedings during team sport exercise preserve physical and CNS function. Med Sci Sports Exerc. 2005, 37 (2): 306-15. 10.1249/01.MSS.0000152803.35130.A4.

    CAS  PubMed  Article  Google Scholar 

  389. Kendall RW, Jacquemin G, Frost R, Burns SP: Creatine supplementation for weak muscles in persons with chronic tetraplegia: a randomized double-blind placebo-controlled crossover trial. J Spinal Cord Med. 2005, 28 (3): 208-13.

    PubMed  Google Scholar 

  390. Kendall KL, Smith AE, Graef JL, Fukuda DH, Moon JR, Beck TW, Cramer JT, Stout JR: Effects of four weeks of high-intensity interval training and creatine supplementation on critical power and anaerobic working capacity in college-aged men. J Strength Cond Res. 2009, 23 (6): 1663-9.

    PubMed  Article  Google Scholar 

  391. Kreider RB, Ferreira M, Wilson M, Grindstaff P, Plisk S, Reinardy J, Cantler E, Almada AL: Effects of creatine supplementation on body composition, strength, and sprint performance. Med Sci Sports Exerc. 1998, 30 (1): 73-82.

    CAS  PubMed  Article  Google Scholar 

  392. Derave W, Op'T Eijinde B, Richter EA, Hespel P: Combined creatine and protein supplementation improves glucose tolerance and muscle glycogen accumulation in humans. Abstracts of 6th Internationl Conference on Guanidino Compounds in Biology and Medicine. 2001

    Google Scholar 

  393. Nelson AG, Arnall DA, Kokkonen J, Day R, Evans J: Muscle glycogen supercompensation is enhanced by prior creatine supplementation. Med Sci Sports Exerc. 2001, 33 (7): 1096-100.

    CAS  PubMed  Article  Google Scholar 

  394. Op 't Eijnde B, Richter EA, Henquin JC, Kiens B, Hespel P: Effect of creatine supplementation on creatine and glycogen content in rat skeletal muscle. Acta Physiol Scand. 2001, 171 (2): 169-76. 10.1046/j.1365-201x.2001.00786.x.

    Article  Google Scholar 

  395. Chwalbinska-Moneta J: Effect of creatine supplementation on aerobic performance and anaerobic capacity in elite rowers in the course of endurance training. Int J Sport Nutr Exerc Metab. 2003, 13 (2): 173-83.

    CAS  PubMed  Google Scholar 

  396. Green AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff P: Carbohydrate feeding augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol. 1996, 271: E821-E6.

    CAS  PubMed  Google Scholar 

  397. Nelson AG, Day R, Glickman-Weiss EL, Hegsted M, Kokkonen J, Sampson B: Creatine supplementation alters the response to a graded cycle ergometer test. Eur J Appl Physiol. 2000, 83 (1): 89-94. 10.1007/s004210000244.

    CAS  PubMed  Article  Google Scholar 

  398. Nelson AG, Day R, Glickman-Weiss EL, Hegsted M, Sampson B: Creatine supplementation raises anaerobic threshold. FASEB Journal. 1997, 11: A589-

    Google Scholar 

  399. Kreider RB, Miller GW, Williams MH, Somma CT, Nasser TA: Effects of phosphate loading on oxygen uptake, ventilatory anaerobic threshold, and run performance. Med Sci Sports Exerc. 1990, 22 (2): 250-6.

    CAS  PubMed  Article  Google Scholar 

  400. Cade R, Conte M, Zauner C, Mars D, Peterson J, Lunne D, Hommen N, Packer D: Effects of phosphate loading on 2,3 diphosphoglycerate and maximal oxygen uptake. Med Sci Sports Exerc. 1984, 16: 263-8.

    CAS  PubMed  Article  Google Scholar 

  401. Kreider RB, Miller GW, Schenck D, Cortes CW, Miriel V, Somma CT, Rowland P, Turner C, Hill D: Effects of phosphate loading on metabolic and myocardial responses to maximal and endurance exercise. Int J Sport Nutr. 1992, 2 (1): 20-47.

    CAS  PubMed  Google Scholar 

  402. Kreider RB, Miller GW, Williams MH, Somma CT, Nasser TA: Effects of phosphate loading on oxygen uptake, ventilatory anaerobic threshold, and run performance. Med Sci Sports Exerc. 1990, 22 (2): 250-6.

    CAS  PubMed  Article  Google Scholar 

  403. Stewart I, McNaughton L, Davies P, Tristram S: Phosphate loading and the effects of VO2max in trained cyclists. Res Quart. 1990, 61: 80-4.

    CAS  Google Scholar 

  404. Folland JP, Stern R, Brickley G: Sodium phosphate loading improves laboratory cycling time-trial performance in trained cyclists. J Sci Med Sport. 2008, 11 (5): 464-8. 10.1016/j.jsams.2007.04.004.

    PubMed  Article  Google Scholar 

  405. McNaughton L, Backx K, Palmer G, Strange N: Effects of chronic bicarbonate ingestion on the performance of high-intensity work. Eur J Appl Physiol Occup Physiol. 1999, 80 (4): 333-6. 10.1007/s004210050600.

    CAS  PubMed  Article  Google Scholar 

  406. Applegate E: Effective nutritional ergogenic aids. Int J Sport Nutr. 1999, 9 (2): 229-39.

    CAS  PubMed  Google Scholar 

  407. Kronfeld DS, Ferrante PL, Grandjean D: Optimal nutrition for athletic performance, with emphasis on fat adaptation in dogs and horses. J Nutr. 1994, 124 (12 Suppl): 2745S-53S.

    CAS  PubMed  Google Scholar 

  408. Kraemer WJ, Gordon SE, Lynch JM, Pop ME, Clark KL: Effects of multibuffer supplementation on acid-base balance and 2,3-diphosphoglycerate following repetitive anaerobic exercise. Int J Sport Nutr. 1995, 5 (4): 300-14.

    CAS  PubMed  Google Scholar 

  409. Matson LG, Tran ZV: Effects of sodium bicarbonate ingestion on anaerobic performance: a meta-analytic review. Int J Sport Nutr. 1993, 3 (1): 2-28.

    CAS  PubMed  Google Scholar 

  410. Lindh AM, Peyrebrune MC, Ingham SA, Bailey DM, Folland JP: Sodium bicarbonate improves swimming performance. Int J Sports Med. 2008, 29 (6): 519-23. 10.1055/s-2007-989228.

    CAS  PubMed  Article  Google Scholar 

  411. Wiles JD, Coleman D, Tegerdine M, Swaine IL: The effects of caffeine ingestion on performance time, speed and power during a laboratory-based 1 km cycling time-trial. J Sports Sci. 2006, 24 (11): 1165-71. 10.1080/02640410500457687.

    PubMed  Article  Google Scholar 

  412. Ivy JL, Kammer L, Ding Z, Wang B, Bernard JR, Liao YH, Hwang J: Improved cycling time-trial performance after ingestion of a caffeine energy drink. Int J Sport Nutr Exerc Metab. 2009, 19 (1): 61-78.

    CAS  PubMed  Google Scholar 

  413. McNaughton LR, Lovell RJ, Siegler J, Midgley AW, Moore L, Bentley DJ: The effects of caffeine ingestion on time trial cycling performance. Int J Sports Physiol Perform. 2008, 3 (2): 157-63.

    CAS  PubMed  Google Scholar 

  414. Graham TE: Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001, 31 (11): 785-807. 10.2165/00007256-200131110-00002.

    CAS  PubMed  Article  Google Scholar 

  415. Carr A, Dawson B, Schneiker K, Goodman C, Lay B: Effect of caffeine supplementation on repeated sprint running performance. J Sports Med Phys Fitness. 2008, 48 (4): 472-8.

    CAS  PubMed  Google Scholar 

  416. Glaister M, Howatson G, Abraham CS, Lockey RA, Goodwin JE, Foley P, McInnes G: Caffeine supplementation and multiple sprint running performance. Med Sci Sports Exerc. 2008, 40 (10): 1835-40. 10.1249/MSS.0b013e31817a8ad2.

    CAS  PubMed  Article  Google Scholar 

  417. Tarnopolsky MA, Atkinson SA, MacDougall JD, Sale DG, Sutton JR: Physiological responses to caffeine during endurance running in habitual caffeine users. Med Sci Sports Exerc. 1989, 21 (4): 418-24.

    CAS  PubMed  Article  Google Scholar 

  418. Armstrong LE: Caffeine, body fluid-electrolyte balance, and exercise performance. Int J Sport Nutr Exerc Metab. 2002, 12 (2): 189-206.

    CAS  PubMed  Google Scholar 

  419. Falk B, Burstein R, Rosenblum J, Shapiro Y, Zylber-Katz E, Bashan N: Effects of caffeine ingestion on body fluid balance and thermoregulation during exercise. Can J Physiol Pharmacol. 1990, 68 (7): 889-92.

    CAS  PubMed  Article  Google Scholar 

  420. Harris R, Dunnett M, Greenhaf P: Carnosine and Taurine contents in individual fibres of human vastus lateralis muscle. J Sport Sci. 1998, 16: 639-43. 10.1080/026404198366443.

    Article  Google Scholar 

  421. Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA: The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006, 30 (3): 279-89. 10.1007/s00726-006-0299-9.

    CAS  PubMed  Article  Google Scholar 

  422. Stout JR, Cramer JT, Mielke M, O'Kroy J, Torok DJ, Zoeller RF: Effects of twenty-eight days of beta-alanine and creatine monohydrate supplementation on the physical working capacity at neuromuscular fatigue threshold. J Strength Cond Res. 2006, 20 (4): 928-31. 10.1519/R-19655.1.

    PubMed  Google Scholar 

  423. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA: Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007, 32 (2): 225-33. 10.1007/s00726-006-0364-4.

    CAS  PubMed  Article  Google Scholar 

  424. Hoffman J, Ratamess NA, Ross R, Kang J, Magrelli J, Neese K, Faigenbaum AD, Wise JA: beta-Alanine and the Hormonal Response to Exercise. Int J Sports Med. 2008, 29 (12): 952-8. 10.1055/s-2008-1038678.

    CAS  PubMed  Article  Google Scholar 

  425. Smith AE, Walter AA, Graef JL, Kendall KL, Moon JR, Lockwood CM, Fakuda DH, Beck TW, Cramer JT, Stout JR: Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. J Int Soc Sports Nutr. 2009, 6 (1): 5. 10.1186/1550-2783-6-5.

  426. Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E: beta-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol. 2007, 103 (5): 1736-43. 10.1152/japplphysiol.00397.2007.

    CAS  PubMed  Article  Google Scholar 

  427. Hoffman JR, Ratamess NA, Faigenbaum AD, Ross R, Kang J, Stout JR, Wise JA: Short-duration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players. Nutr Res. 2008, 28 (1): 31-5. 10.1016/j.nutres.2007.11.004.

    CAS  PubMed  Article  Google Scholar 

  428. Hoffman J, Ratamess N, Kang J, Mangine G, Faigenbaum A, Stout J: Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes. Int J Sport Nutr Exerc Metab. 2006, 16 (4): 430-46.

    CAS  PubMed  Google Scholar 

  429. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT, Smith M, Wise JA: The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids. 2008, 34 (4): 547-54. 10.1007/s00726-007-0008-3.

    CAS  PubMed  Article  Google Scholar 

  430. Tarnopolsky MA, Parise G, Yardley NJ, Ballantyne CS, Olatinji S, Phillips SM: Creatine-dextrose and protein-dextrose induce similar strength gains during training. Med Sci Sports Exerc. 2001, 33 (12): 2044-52. 10.1097/00005768-200112000-00011.

    CAS  PubMed  Article  Google Scholar 

  431. Kreider RB, Earnest CP, Lundberg J, Rasmussen C, Greenwood M, Cowan P, Almada AL: Effects of ingesting protein with various forms of carbohydrate following resistance-exercise on substrate availability and markers of anabolism, catabolism, and immunity. J Int Soc Sports Nutr. 2007, 4: 18-10.1186/1550-2783-4-18.

    PubMed Central  PubMed  Article  Google Scholar 

  432. Cribb PJ, Hayes A: Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Med Sci Sports Exerc. 2006, 38 (11): 1918-25. 10.1249/01.mss.0000233790.08788.3e.

    PubMed  Article  Google Scholar 

  433. Kerksick CM, Rasmussen CJ, Lancaster SL, Magu B, Smith P, Melton C, Greenwood M, Almada AL, Earnest CP, Kreider RB: The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training. J Strength Cond Res. 2006, 20 (3): 643-53. 10.1519/R-17695.1.

    PubMed  Google Scholar 

  434. Tipton KD, Borsheim E, Wolf SE, Sanford AP, Wolfe RR: Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion. Am J Physiol Endocrinol Metab. 2003, 284: E76-E89.

    CAS  PubMed  Article  Google Scholar 

  435. Hoffman JR, Cooper J, Wendell M, Im J, Kang J: Effects of beta-hydroxy beta-methylbutyrate on power performance and indices of muscle damage and stress during high-intensity training. J Strength Cond Res. 2004, 18 (4): 747-52. 10.1519/13973.1.

    PubMed  Google Scholar 

  436. Thomson JS, Watson PE, Rowlands DS: Effects of nine weeks of beta-hydroxy-beta-methylbutyrate supplementation on strength and body composition in resistance trained men. J Strength Cond Res. 2009, 23 (3): 827-35.

    PubMed  Article  Google Scholar 

  437. Wagner DR: Hyperhydrating with glycerol: implications for athletic performance. J Am Diet Assoc. 1999, 99 (2): 207-12. 10.1016/S0002-8223(99)00049-8.

    CAS  PubMed  Article  Google Scholar 

  438. Inder WJ, Swanney MP, Donald RA, Prickett TC, Hellemans J: The effect of glycerol and desmopressin on exercise performance and hydration in triathletes. Med Sci Sports Exerc. 1998, 30 (8): 1263-9. 10.1097/00005768-199808000-00013.

    CAS  PubMed  Article  Google Scholar 

  439. Montner P, Stark DM, Riedesel ML, Murata G, Robergs R, Timms M, Chick TW: Pre-exercise glycerol hydration improves cycling endurance time. Int J Sports Med. 1996, 17 (1): 27-33. 10.1055/s-2007-972804.

    CAS  PubMed  Article  Google Scholar 

  440. Boulay MR, Song TM, Serresse O, Theriault G, Simoneau JA, Bouchard C: Changes in plasma electrolytes and muscle substrates during short-term maximal exercise in humans. Can J Appl Physiol. 1995, 20 (1): 89-101.

    CAS  PubMed  Article  Google Scholar 

  441. Tikuisis P, Ducharme MB, Moroz D, Jacobs I: Physiological responses of exercised-fatigued individuals exposed to wet-cold conditions. J Appl Physiol. 1999, 86 (4): 1319-28.

    CAS  PubMed  Google Scholar 

  442. Jimenez C, Melin B, Koulmann N, Allevard AM, Launay JC, Savourey G: Plasma volume changes during and after acute variations of body hydration level in humans. Eur J Appl Physiol Occup Physiol. 1999, 80 (1): 1-8. 10.1007/s004210050550.

    CAS  PubMed  Article  Google Scholar 

  443. Magal M, Webster MJ, Sistrunk LE, Whitehead MT, Evans RK, Boyd JC: Comparison of glycerol and water hydration regimens on tennis-related performance. Med Sci Sports Exerc. 2003, 35 (1): 150-6. 10.1097/00005768-200301000-00023.

    CAS  PubMed  Article  Google Scholar 

  444. Kavouras SA, Armstrong LE, Maresh CM, Casa DJ, Herrera-Soto JA, Scheett TP, Stoppani J, Mack GW, Kraemer WJ: Rehydration with glycerol: endocrine, cardiovascular, and thermoregulatory responses during exercise in the heat. J Appl Physiol. 2006, 100 (2): 442-50. 10.1152/japplphysiol.00187.2005.

    CAS  PubMed  Article  Google Scholar 

  445. Jeukendrup AE, Thielen JJ, Wagenmakers AJ, Brouns F, Saris WH: Effect of medium-chain triacylglycerol and carbohydrate ingestion during exercise on substrate utilization and subsequent cycling performance. Am J Clin Nutr. 1998, 67 (3): 397-404.

    CAS  PubMed  Google Scholar 

  446. Goedecke JH, Elmer-English R, Dennis SC, Schloss I, Noakes TD, Lambert EV: Effects of medium-chain triaclyglycerol ingested with carbohydrate on metabolism and exercise performance. Int J Sport Nutr. 1999, 9 (1): 35-47.

    CAS  PubMed  Google Scholar 

  447. Calabrese C, Myer S, Munson S, Turet P, Birdsall TC: A cross-over study of the effect of a single oral feeding of medium chain triglyceride oil vs. canola oil on post-ingestion plasma triglyceride levels in healthy men. Altern Med Rev. 1999, 4 (1): 23-8.

    CAS  PubMed  Google Scholar 

  448. Angus DJ, Hargreaves M, Dancey J, Febbraio MA: Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance. J Appl Physiol. 2000, 88 (1): 113-9.

    CAS  PubMed  Google Scholar 

  449. Van Zyl CG, Lambert EV, Hawley JA, Noakes TD, Dennis SC: Effects of medium-chain triglyceride ingestion on fuel metabolism and cycling performance. J Appl Physiol. 1996, 80 (6): 2217-25.

    CAS  PubMed  Google Scholar 

  450. Misell LM, Lagomarcino ND, Schuster V, Kern M: Chronic medium-chain triacylglycerol consumption and endurance performance in trained runners. J Sports Med Phys Fitness. 2001, 41 (2): 210-5.

    CAS  PubMed  Google Scholar 

  451. Goedecke JH, Clark VR, Noakes TD, Lambert EV: The effects of medium-chain triacylglycerol and carbohydrate ingestion on ultra-endurance exercise performance. Int J Sport Nutr Exerc Metab. 2005, 15 (1): 15-27.

    CAS  PubMed  Google Scholar 

  452. Burke LM, Kiens B, Ivy JL: Carbohydrates and fat for training and recovery. J Sports Sci. 2004, 22 (1): 15-30. 10.1080/0264041031000140527.

    PubMed  Article  Google Scholar 

  453. Thorburn MS, Vistisen B, Thorp RM, Rockell MJ, Jeukendrup AE, Xu X, Rowlands DS: Attenuated gastric distress but no benefit to performance with adaptation to octanoate-rich esterified oils in well-trained male cyclists. J Appl Physiol. 2006, 101 (6): 1733-43. 10.1152/japplphysiol.00393.2006.

    CAS  PubMed  Article  Google Scholar 

  454. Nosaka N, Suzuki Y, Nagatoishi A, Kasai M, Wu J, Taguchi M: Effect of ingestion of medium-chain triacylglycerols on moderate- and high-intensity exercise in recreational athletes. J Nutr Sci Vitaminol (Tokyo). 2009, 55 (2): 120-5. 10.3177/jnsv.55.120.

    CAS  Article  Google Scholar 

  455. Tullson PC, Terjung RL: Adenine nucleotide synthesis in exercising and endurance-trained skeletal muscle. Am J Physiol. 1991, 261 (2 Pt 1): C342-7.

    CAS  PubMed  Google Scholar 

  456. Gross M, Kormann B, Zollner N: Ribose administration during exercise: effects on substrates and products of energy metabolism in healthy subjects and a patient with myoadenylate deaminase deficiency. Klin Wochenschr. 1991, 69 (4): 151-5. 10.1007/BF01665856.

    CAS  PubMed  Article  Google Scholar 

  457. Wagner DR, Gresser U, Kamilli I, Gross M, Zollner N: Effects of oral ribose on muscle metabolism during bicycle ergometer in patients with AMP-deaminase-deficiency. Adv Exp Med Biol. 1991, 383-5.

    Google Scholar 

  458. Pliml W, von Arnim T, Stablein A, Hofmann H, Zimmer HG, Erdmann E: Effects of ribose on exercise-induced ischaemia in stable coronary artery disease. Lancet. 1992, 340 (8818): 507-10. 10.1016/0140-6736(92)91709-H.

    CAS  PubMed  Article  Google Scholar 

  459. Pauly DF, Pepine CJ: D-Ribose as a supplement for cardiac energy metabolism. J Cardiovasc Pharmacol Ther. 2000, 5 (4): 249-58. 10.1054/JCPT.2000.18011.

    CAS  PubMed  Article  Google Scholar 

  460. Op 't Eijnde B, Van Leemputte M, Brouns F, Vusse Van Der GJ, Labarque V, Ramaekers M, Van Schuylenberg R, Verbessem P, Wijnen H, Hespel P: No effects of oral ribose supplementation on repeated maximal exercise and de novo ATP resynthesis. J Appl Physiol. 2001, 91 (5): 2275-81.

    Google Scholar 

  461. Berardi JM, Ziegenfuss TN: Effects of ribose supplementation on repeated sprint performance in men. J Strength Cond Res. 2003, 17 (1): 47-52. 10.1519/1533-4287(2003)017<0047:EORSOR>2.0.CO;2.

    PubMed  Google Scholar 

  462. Kreider RB, Melton C, Greenwood M, Rasmussen C, Lundberg J, Earnest C, Almada A: Effects of oral D-ribose supplementation on anaerobic capacity and selected metabolic markers in healthy males. Int J Sport Nutr Exerc Metab. 2003, 13 (1): 76-86.

    CAS  PubMed  Google Scholar 

  463. Dunne L, Worley S, Macknin M: Ribose versus dextrose supplementation, association with rowing performance: a double-blind study. Clin J Sport Med. 2006, 16 (1): 68-71. 10.1097/01.jsm.0000180022.44889.94.

    PubMed  Article  Google Scholar 

  464. Kerksick C, Rasmussen C, Bowden R, Leutholtz B, Harvey T, Earnest C, Greenwood M, Almada A, Kreider R: Effects of ribose supplementation prior to and during intense exercise on anaerobic capacity and metabolic markers. Int J Sport Nutr Exerc Metab. 2005, 15 (6): 653-64.

    CAS  PubMed  Google Scholar 

  465. Hargreaves M, McKenna MJ, Jenkins DG, Warmington SA, Li JL, Snow RJ, Febbraio MA: Muscle metabolites and performance during high-intensity, intermittent exercise. J Appl Physiol. 1998, 84 (5): 1687-91.

    CAS  PubMed  Google Scholar 

  466. Starling RD, Trappe TA, Short KR, Sheffield-Moore M, Jozsi AC, Fink WJ, Costill DL: Effect of inosine supplementation on aerobic and anaerobic cycling performance. Med Sci Sports Exerc. 1996, 28 (9): 1193-8.

    CAS  PubMed  Article  Google Scholar 

  467. Williams MH, Kreider RB, Hunter DW, Somma CT, Shall LM, Woodhouse ML, Rokitski L: Effect of inosine supplementation on 3-mile treadmill run performance and VO2 peak. Med Sci Sports Exerc. 1990, 22 (4): 517-22.

    CAS  PubMed  Article  Google Scholar 

  468. McNaughton L, Dalton B, Tarr J: Inosine supplementation has no effect on aerobic or anaerobic cycling performance. Int J Sport Nutr. 1999, 9 (4): 333-44.

    CAS  PubMed  Google Scholar 

  469. Braham R, Dawson B, Goodman C: The effect of glucosamine supplementation on people experiencing regular knee pain. Br J Sports Med. 2003, 37 (1): 45-9. 10.1136/bjsm.37.1.45. discussion 9

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  470. Vad V, Hong HM, Zazzali M, Agi N, Basrai D: Exercise recommendations in athletes with early osteoarthritis of the knee. Sports Med. 2002, 32 (11): 729-39. 10.2165/00007256-200232110-00004.

    PubMed  Article  Google Scholar 

  471. Nieman DC: Exercise immunology: nutritional countermeasures. Can J Appl Physiol. 2001, 26 (Suppl): S45-55.

    CAS  PubMed  Article  Google Scholar 

  472. Gleeson M, Lancaster GI, Bishop NC: Nutritional strategies to minimise exercise-induced immunosuppression in athletes. Can J Appl Physiol. 2001, 26 (Suppl): S23-35.

    PubMed  Article  Google Scholar 

  473. Gleeson M, Bishop NC: Elite athlete immunology: importance of nutrition. Int J Sports Med. 2000, 21 (Suppl 1): S44-50. 10.1055/s-2000-1451.

    CAS  PubMed  Article  Google Scholar 

  474. Nieman DC, Pedersen BK: Exercise and immune function. Recent developments. Sports Med. 1999, 27 (2): 73-80. 10.2165/00007256-199927020-00001.

    CAS  PubMed  Article  Google Scholar 

  475. Lowery L, Berardi JM, Ziegenfuss Antioxidants: Sports Supplements. Edited by: Antonio J, Stout J. 2001, Baltimore, MD: Lippincott, Williams & Wilkins, 260-78.

    Google Scholar 

  476. Gomez AL, Volek JS, Ratamess NA, Rubin MR, Wickham RB, Mazzetti SA, Doan BK, Newton RU, Kraemer WJ: Creatine supplementation enhances body composition during short-term reisstance training overreaching. Journal of Strength and Conditioning Research. 2000, 14 (3):

  477. French DN, Volek JS, Ratamess NA, Mazzetti SA, Rubin MR, Gomez AL, Wickham RB, Doan BK, McGuigan MR, Scheett TP, Newton RU, Dorofeyeva E, Kraemer WJ: The effects of creatine supplementation on resting serum hormonal concentrations during short-term resistance training overreaching. Med Sci Sports & Exerc. 2001, 33 (5): S203-10.1097/00005768-200105001-01142.

    Article  Google Scholar 

  478. Mero A: Leucine supplementation and intensive training. Sports Med. 1999, 27 (6): 347-58. 10.2165/00007256-199927060-00001.

    CAS  PubMed  Article  Google Scholar 

  479. Harris WS, Appel LJ: New guidelines focus on fish, fish oil, omega-3 fatty acids. American Heart Association, 2002(November 11), [http://www.americanheart.org/presenter.jhtml?identifier=3065754]

  480. Williams MH: Vitamin supplementation and athletic performance. Int J Vitam Nutr Res Suppl. 1989, 30: 163-91.

    CAS  PubMed  Google Scholar 

  481. Reid IR: Therapy of osteoporosis: calcium, vitamin D, and exercise. Am J Med Sci. 1996, 312 (6): 278-86. 10.1097/00000441-199612000-00006.

    CAS  PubMed  Article  Google Scholar 

  482. Goldfarb AH: Antioxidants: role of supplementation to prevent exercise-induced oxidative stress. Med Sci Sports Exerc. 1993, 25 (2): 232-6.

    CAS  PubMed  Article  Google Scholar 

  483. Goldfarb AH: Nutritional antioxidants as therapeutic and preventive modalities in exercise-induced muscle damage. Can J Appl Physiol. 1999, 24 (3): 249-66.

    CAS  PubMed  Article  Google Scholar 

  484. Appell HJ, Duarte JA, Soares JM: Supplementation of vitamin E may attenuate skeletal muscle immobilization atrophy. Int J Sports Med. 1997, 18 (3): 157-60. 10.1055/s-2007-972612.

    CAS  PubMed  Article  Google Scholar 

  485. Tiidus PM, Houston ME: Vitamin E status and response to exercise training. Sports Med. 1995, 20 (1): 12-23. 10.2165/00007256-199520010-00002.

    CAS  PubMed  Article  Google Scholar 

  486. Craciun AM, Wolf J, Knapen MH, Brouns F, Vermeer C: Improved bone metabolism in female elite athletes after vitamin K supplementation. Int J Sports Med. 1998, 19 (7): 479-84. 10.1055/s-2007-971948.

    CAS  PubMed  Article  Google Scholar 

  487. Fogelholm M, Ruokonen I, Laakso JT, Vuorimaa T, Himberg JJ: Lack of association between indices of vitamin B1, B2, and B6 status and exercise-induced blood lactate in young adults. Int J Sport Nutr. 1993, 3 (2): 165-76.

    CAS  PubMed  Google Scholar 

  488. Garg R, Malinow M, Pettinger M, Upson B, Hunninghake D: Niacin treatment increases plasma homocyst(e)ine levels. Am Heart J. 1999, 138 (6 Pt 1): 1082-7. 10.1016/S0002-8703(99)70073-6.

    CAS  PubMed  Article  Google Scholar 

  489. Alaswad K, O'Keefe JH, Moe RM: Combination drug therapy for dyslipidemia. Curr Atheroscler Rep. 1999, 1 (1): 44-9. 10.1007/s11883-999-0049-z.

    CAS  PubMed  Article  Google Scholar 

  490. Murray R, Bartoli WP, Eddy DE, Horn MK: Physiological and performance responses to nicotinic-acid ingestion during exercise. Med Sci Sports Exerc. 1995, 27 (7): 1057-62. 10.1249/00005768-199507000-00015.

    CAS  PubMed  Article  Google Scholar 

  491. Bonke D: Influence of vitamin B1, B6, and B12 on the control of fine motoric movements. Bibl Nutr Dieta. 1986 (38): 104-9.

  492. Bonke D, Nickel B: Improvement of fine motoric movement control by elevated dosages of vitamin B1, B6, and B12 in target shooting. Int J Vitam Nutr Res Suppl. 1989, 30: 198-204.

    CAS  PubMed  Google Scholar 

  493. Van Dyke DC, Stumbo PJ, Mary JB, Niebyl JR: Folic acid and prevention of birth defects. Dev Med Child Neurol. 2002, 44 (6): 426-9. 10.1017/S0012162201002316.

    PubMed  Article  Google Scholar 

  494. Mattson MP, Kruman II, Duan W: Folic acid and homocysteine in age-related disease. Ageing Res Rev. 2002, 1 (1): 95-111. 10.1016/S0047-6374(01)00365-7.

    CAS  PubMed  Article  Google Scholar 

  495. Weston PM, King RF, Goode AW, Williams NS: Diet-induced thermogenesis in patients with gastrointestinal cancer cachexia. Clin Sci (Lond). 1989, 77 (2): 133-8.

    CAS  Article  Google Scholar 

  496. Webster MJ: Physiological and performance responses to supplementation with thiamin and pantothenic acid derivatives. Eur J Appl Physiol Occup Physiol. 1998, 77 (6): 486-91. 10.1007/s004210050364.

    CAS  PubMed  Article  Google Scholar 

  497. Beek van der EJ, Lowik MR, Hulshof KF, Kistemaker C: Combinations of low thiamin, riboflavin, vitamin B6 and vitamin C intake among Dutch adults. (Dutch Nutrition Surveillance System). J Am Coll Nutr. 1994, 13 (4): 383-91.

    PubMed  Article  Google Scholar 

  498. Beek van der EJ: Vitamin supplementation and physical exercise performance. J Sports Sci. 1991, 77-90. Spec No

  499. Pedersen BK, Bruunsgaard H, Jensen M, Krzywkowski K, Ostrowski K: Exercise and immune function: effect of ageing and nutrition. Proc Nutr Soc. 1999, 58 (3): 733-42.

    CAS  PubMed  Article  Google Scholar 

  500. Petersen EW, Ostrowski K, Ibfelt T, Richelle M, Offord E, Halkjaer-Kristensen J, Pedersen BK: Effect of vitamin supplementation on cytokine response and on muscle damage after strenuous exercise. Am J Physiol Cell Physiol. 2001, 280 (6): C1570-5.

    CAS  PubMed  Google Scholar 

  501. Grados F, Brazier M, Kamel S, Duver S, Heurtebize N, Maamer M, Mathieu M, Garabedian M, Sebert JL, Fardellone P: Effects on bone mineral density of calcium and vitamin D supplementation in elderly women with vitamin D deficiency. Joint Bone Spine. 2003, 70 (3): 203-8. 10.1016/S1297-319X(03)00046-0.

    PubMed  Article  Google Scholar 

  502. Brutsaert TD, Hernandez-Cordero S, Rivera J, Viola T, Hughes G, Haas JD: Iron supplementation improves progressive fatigue resistance during dynamic knee extensor exercise in iron-depleted, nonanemic women. Am J Clin Nutr. 2003, 77 (2): 441-8.

    CAS  PubMed  Google Scholar 

  503. Bohl CH, Volpe SL: Magnesium and exercise. Crit Rev Food Sci Nutr. 2002, 42 (6): 533-63. 10.1080/20024091054247.

    CAS  PubMed  Article  Google Scholar 

  504. Lukaski HC: Magnesium, zinc, and chromium nutrition and athletic performance. Can J Appl Physiol. 2001, 26 (Suppl): S13-22.

    CAS  PubMed  Article  Google Scholar 

  505. Morton DP, Callister R: Characteristics and etiology of exercise-related transient abdominal pain. Med Sci Sports Exerc. 2000, 32 (2): 432-8. 10.1097/00005768-200002000-00026.

    CAS  PubMed  Article  Google Scholar 

  506. Noakes TD: Fluid and electrolyte disturbances in heat illness. Int J Sports Med. 1998, 19 (Suppl 2): S146-9. 10.1055/s-2007-971982.

    PubMed  Article  Google Scholar 

  507. Margaritis I, Tessier F, Prou E, Marconnet P, Marini JF: Effects of endurance training on skeletal muscle oxidative capacities with and without selenium supplementation. J Trace Elem Med Biol. 1997, 11 (1): 37-43.

    CAS  PubMed  Article  Google Scholar 

  508. Tessier F, Margaritis I, Richard MJ, Moynot C, Marconnet P: Selenium and training effects on the glutathione system and aerobic performance. Med Sci Sports Exerc. 1995, 27 (3): 390-6.

    CAS  PubMed  Article  Google Scholar 

  509. McCutcheon LJ, Geor RJ: Sweating. Fluid and ion losses and replacement. Vet Clin North Am Equine Pract. 1998, 14 (1): 75-95.

    CAS  PubMed  Google Scholar 

  510. Gibson RS, Heath AL, Ferguson EL: Risk of suboptimal iron and zinc nutriture among adolescent girls in Australia and New Zealand: causes, consequences, and solutions. Asia Pac J Clin Nutr. 2002, 11 (Suppl 3): S543-52. 10.1046/j.1440-6047.11.supp3.10.x.

    CAS  PubMed  Article  Google Scholar 

  511. Singh A, Failla ML, Deuster PA: Exercise-induced changes in immune function: effects of zinc supplementation. J Appl Physiol. 1994, 76 (6): 2298-303.

    CAS  PubMed  Google Scholar 


Page 2

Nutrient RDA Proposed Ergogenic Value Summary of Research Findings
Vitamin A Males 900 mcg/d Females 700 mcg/d Constituent of rhodopsin (visual pigment) and is involved in night vision. Some suggest that vitamin A supplementation may improve sport vision. No studies have shown that vitamin A supplementation improves exercise performance [480].
Vitamin D 5 mcg/d (age <51) Promotes bone growth and mineralization. Enhances calcium absorption. Supplementation with calcium may help prevent bone loss in osteoperotic populations. Co-supplementation with calcium may help prevent bone loss in athletes susceptible to osteoporosis [481]. However, vitamin D supplementation does not enhance exercise performance [480].
Vitamin E 15 mg/d As an antioxidant, it has been shown to help prevent the formation of free radicals during intense exercise and prevent the destruction of red blood cells, improving or maintaining oxygen delivery to the muscles during exercise. Some evidence suggests that it may reduce risk to heart disease or decrease incidence of recurring heart attack. Numerous studies show that vitamin E supplementation can decrease exercise-induced oxidative stress [482–484]. However, most studies show no effects on performance at sea level. At high altitudes, vitamin E may improve exercise performance [485]. Additional research is necessary to determine whether long-term supplementation may help athletes better tolerate training.
Vitamin K Males 120 mcg/d Females 90 mcg/d Important in blood clotting. There is also some evidence that it may affect bone metabolism in postmenopausal women. Vitamin K supplementation (10 mg/d) in elite female athletes has been reported to increase calcium-binding capacity of osteocalcin and promoted a 15-20% increase in bone formation markers and a 20-25% decrease in bone resorption markers suggesting an improved balance between bone formation and resorption [486].
Thiamin (B1) Males 1.2 mg/d Females 1.1 mg/d Coenzyme (thiamin pyrophosphate) in the removal of CO2 from decarboxylic reactions from pyruvate to acetyl CoA and in TCA cycle. Supplementation is theorized to improve anaerobic threshold and CO2 transport. Deficiencies may decrease efficiency of energy systems. Dietary availability of thiamin does not appear to affect exercise capacity when athletes have a normal intake [487].
Riboflavin (B2) Males 1.3 mg/d Females 1.7 mg/d Constituent of flavin nucleotide coenzymes involved in energy metabolism. Theorized to enhance energy availability during oxidative metabolism. Dietary availability of riboflavin does not appear to affect exercise capacity when athletes have a normal intake [487].
Niacin (B3) Males 16 mg/d Females 14 mg/d Constituent of coenzymes involved in energy metabolism. Theorized to blunt increases in fatty acids during exercise, reduce cholesterol, enhance thermoregulation, and improve energy availability during oxidative metabolism. Studies indicate that niacin supplementation (100-500 mg/d) can help decrease blood lipid levels and increase homocysteine levels in hypercholesteremic patients [488, 489]. However, niacin supplementation (280 mg) during exercise has been reported to decrease exercise capacity by blunting the mobilization of fatty acids [490].
Pyridoxine (B6) 1.3 mg/d (age <51) Has been marketed as a supplement that will improve muscle mass, strength, and aerobic power in the lactic acid and oxygen systems. It also may have a calming effect that has been linked to an improved mental strength. In well-nourished athletes, pyridoxine failed to improve aerobic capacity, or lactic acid accumulation [487]. However, when combined with vitamins B1 and B12, it may increase serotonin levels and improve fine motor skills that may be necessary in sports like pistol shooting and archery [491, 492].
Cyano-cobalamin (B12) 2.4 mcg/d A coenzyme involved in the production of DNA and serotonin. DNA is important in protein and red blood cell synthesis. Theoretically, it would increase muscle mass, the oxygen-carrying capacity of blood, and decrease anxiety. In well-nourished athletes, no ergogenic effect has been reported. However, when combined with vitamins B1 and B6, cyanocobalamin has been shown to improve performance in pistol shooting [492]. This may be due to increased levels of serotonin, a neurotransmitter in the brain, which may reduce anxiety.
Folic acid (folate) 400 mcg/d Functions as a coenzyme in the formation of DNA and red blood cells. An increase in red blood cells could improve oxygen delivery to the muscles during exercise. Believed to be important to help prevent birth defects and may help decrease homocysteine levels. Studies suggest that increasing dietary availability of folic acid during pregnancy can lower the incidence of birth defects [493]. Additionally, it may decrease homocysteine levels (a risk factor for heart disease) [494]. In well-nourished and folate deficient-athletes, folic acid did not improve exercise performance [495].
Pantothenic acid 5 mg/d Acts as a coenzyme for acetyl coenzyme A (acetyl CoA). This may benefit aerobic or oxygen energy systems. Research has reported no improvements in aerobic performance with acetyl CoA supplementation. However, one study reported a decrease in lactic acid accumulation, without an improvement in performance [496].
Beta carotene None Serves as an antioxidant. Theorized to help minimize exercise-induced lipid peroxidation and muscle damage. Research indicates that beta carotene supplementation with or without other antioxidants can help decrease exercise-induced peroxidation. Over time, this may help athletes tolerate training. However, it is unclear whether antioxidant supplementation affects exercise performance [483].
Vitamin C Males 90 mg/d Females 75 mg/d Used in a number of different metabolic processes in the body. It is involved in the synthesis of epinephrine, iron absorption, and is an antioxidant. Theoretically, it could benefit exercise performance by improving metabolism during exercise. There is also evidence that vitamin C may enhance immunity. In well-nourished athletes, vitamin C supplementation does not appear to improve physical performance [497, 498]. However, there is some evidence that vitamin C supplementation (e.g., 500 mg/d) following intense exercise may decrease the incidence of upper respiratory tract infections [471, 499, 500].

  1. Recommended Dietary Allowances (RDA) based on the 1989 Food & Nutrition Board, National Academy of Sciences-National Research Council recommendations. Updated in 2001