Which of the following statements best predicts the effect of a mutation that results in a loss?

1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70 [PubMed] [Google Scholar]

2. Berenblum I, Shubik P. A new, quantitative, approach to the study of the stages of chemical cartinogenesis in the mouse’s skin. Br J Cancer. 1947;1:383-91 [PMC free article] [PubMed] [Google Scholar]

3. Knudson AG., Jr Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68:820-3 [PMC free article] [PubMed] [Google Scholar]

4. Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9:749-58 [PMC free article] [PubMed] [Google Scholar]

5. Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358:15-6 [PubMed] [Google Scholar]

6. Aylon Y, Oren M. New plays in the p53 theater. Curr Opin Genet Dev. 2011;21:86-92 [PMC free article] [PubMed] [Google Scholar]

7. Peller S, Rotter V. TP53 in hematological cancer: low incidence of mutations with significant clinical relevance. Hum Mutat. 2003;21:277-84 [PubMed] [Google Scholar]

8. Ahmed AA, Etemadmoghadam D, Temple J, et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol. 2010;221:49-56 [PMC free article] [PubMed] [Google Scholar]

9. Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28:622-9 [PubMed] [Google Scholar]

10. Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233-8 [PubMed] [Google Scholar]

11. Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res. 2000;77:81-137 [PubMed] [Google Scholar]

12. Bullock AN, Fersht AR. Rescuing the function of mutant p53. Nat Rev Cancer. 2001;1:68-76 [PubMed] [Google Scholar]

13. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994;265:346-55 [PubMed] [Google Scholar]

14. Milner J, Medcalf EA, Cook AC. Tumor suppressor p53: analysis of wild-type and mutant p53 complexes. Mol Cell Biol. 1991;11:12-9 [PMC free article] [PubMed] [Google Scholar]

15. Milner J, Medcalf EA. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell. 1991;65:765-74 [PubMed] [Google Scholar]

16. Sigal A, Rotter V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 2000;60:6788-93 [PubMed] [Google Scholar]

17. Miller C, Mohandas T, Wolf D, Prokocimer M, Rotter V, Koeffler HP. Human p53 gene localized to short arm of chromosome 17. Nature. 1986;319:783-4 [PubMed] [Google Scholar]

18. Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009;9:701-13 [PubMed] [Google Scholar]

19. Oren M, Rotter V. Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol. 2010;2:a001107 [PMC free article] [PubMed] [Google Scholar]

20. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759-67 [PubMed] [Google Scholar]

21. Cagatay T, Ozturk M. P53 mutation as a source of aberrant beta-catenin accumulation in cancer cells. Oncogene. 2002;21:7971-80 [PubMed] [Google Scholar]

22. Hruban RH, Goggins M, Parsons J, Kern SE. Progression model for pancreatic cancer. Clin Cancer Res. 2000;6:2969-72 [PubMed] [Google Scholar]

23. Olivier M, Langerod A, Carrieri P, et al. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res. 2006;12:1157-67 [PubMed] [Google Scholar]

24. Cohen C, DeRose PB. Immunohistochemical p53 in hepatocellular carcinoma and liver cell dysplasia. Mod Pathol. 1994;7:536-9 [PubMed] [Google Scholar]

25. Murakami Y, Hayashi K, Hirohashi S, Sekiya T. Aberrations of the tumor suppressor p53 and retinoblastoma genes in human hepatocellular carcinomas. Cancer Res. 1991;51:5520-5 [PubMed] [Google Scholar]

26. Oda T, Tsuda H, Scarpa A, Sakamoto M, Hirohashi S. p53 gene mutation spectrum in hepatocellular carcinoma. Cancer Res. 1992;52:6358-64 [PubMed] [Google Scholar]

27. Schlomm T, Iwers L, Kirstein P, et al. Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol. 2008;21:1371-8 [PubMed] [Google Scholar]

28. Kubota Y, Shuin T, Uemura H, et al. Tumor suppressor gene p53 mutations in human prostate cancer. Prostate. 1995;27:18-24 [PubMed] [Google Scholar]

29. Uchida T, Wada C, Ishida H, et al. p53 mutations and prognosis in bladder tumors. J Urol. 1995;153:1097-104 [PubMed] [Google Scholar]

30. Aubele M, Werner M, Hofler H. Genetic alterations in presumptive precursor lesions of breast carcinomas. Anal Cell Pathol. 2002;24:69-76 [PMC free article] [PubMed] [Google Scholar]

31. Hieken TJ, Farolan M, D’Alessandro S, Velasco JM. Predicting the biologic behavior of ductal carcinoma in situ: an analysis of molecular markers. Surgery. 2001;130:593-600; discussion 600-1 [PubMed] [Google Scholar]

32. Iakova P, Timchenko L, Timchenko NA. Intracellular signaling and hepatocellular carcinoma. Semin Cancer Biol. 2011;21(1):28-34 [PMC free article] [PubMed] [Google Scholar]

33. Louis DN. The p53 gene and protein in human brain tumors. J Neuropathol Exp Neurol. 1994;53:11-21 [PubMed] [Google Scholar]

34. Nozaki M, Tada M, Kobayashi H, et al. Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progression. Neuro Oncol. 1999;1:124-37 [PMC free article] [PubMed] [Google Scholar]

35. Barrett MT, Sanchez CA, Prevo LJ, et al. Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet. 1999;22:106-9 [PMC free article] [PubMed] [Google Scholar]

36. Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of 25 major cancers in 1990. Int J Cancer. 1999;80:827-41 [PubMed] [Google Scholar]

37. Wild CP, Jansen LA, Cova L, Montesano R. Molecular dosimetry of aflatoxin exposure: contribution to understanding the multifactorial etiopathogenesis of primary hepatocellular carcinoma with particular reference to hepatitis B virus. Environ Health Perspect. 1993;99:115-22 [PMC free article] [PubMed] [Google Scholar]

38. Montesano R, Hainaut P, Wild CP. Hepatocellular carcinoma: from gene to public health. J Natl Cancer Inst. 1997;89:1844-51 [PubMed] [Google Scholar]

39. Aguilar F, Hussain SP, Cerutti P. Aflatoxin B1 induces the transversion of G→T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc Natl Acad Sci U S A. 1993;90:8586-90 [PMC free article] [PubMed] [Google Scholar]

40. Guengerich FP, Johnson WW, Ueng YF, Yamazaki H, Shimada T. Involvement of cytochrome P450, glutathione S-transferase, and epoxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of human liver cancer. Environ Health Perspect. 1996;104(Suppl 3):557-62 [PMC free article] [PubMed] [Google Scholar]

41. Buss P, Caviezel M, Lutz WK. Linear dose-response relationship for DNA adducts in rat liver from chronic exposure to aflatoxin B1. Carcinogenesis. 1990;11:2133-5 [PubMed] [Google Scholar]

42. Staib F, Hussain SP, Hofseth LJ, Wang XW, Harris CC. TP53 and liver carcinogenesis. Hum Mutat. 2003;21:201-16 [PubMed] [Google Scholar]

43. Aguilar F, Harris CC, Sun T, Hollstein M, Cerutti P. Geographic variation of p53 mutational profile in nonmalignant human liver. Science. 1994;264:1317-9 [PubMed] [Google Scholar]

44. Toyooka S, Tsuda T, Gazdar AF. The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat. 2003;21:229-39 [PubMed] [Google Scholar]

45. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994;54:4855-78 [PubMed] [Google Scholar]

46. Hainaut P, Pfeifer GP. Patterns of p53 G→T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis. 2001;22:367-74 [PubMed] [Google Scholar]

47. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26:2157-65 [PubMed] [Google Scholar]

48. Giglia-Mari G, Sarasin A. TP53 mutations in human skin cancers. Hum Mutat. 2003;21:217-28 [PubMed] [Google Scholar]

49. Benjamin CL, Melnikova VO, Ananthaswamy HN. P53 protein and pathogenesis of melanoma and nonmelanoma skin cancer. Adv Exp Med Biol. 2008;624:265-82 [PubMed] [Google Scholar]

50. Benjamin CL, Ananthaswamy HN. p53 and the pathogenesis of skin cancer. Toxicol Appl Pharmacol. 2007;224:241-8 [PMC free article] [PubMed] [Google Scholar]

51. Olivier M, Hainaut P. TP53 mutation patterns in breast cancers: searching for clues of environmental carcinogenesis. Semin Cancer Biol. 2001;11:353-60 [PubMed] [Google Scholar]

52. Rotter V, Witte ON, Coffman R, Baltimore D. Abelson murine leukemia virus-induced tumors elicit antibodies against a host cell protein, P50. J Virol. 1980;36:547-55 [PMC free article] [PubMed] [Google Scholar]

53. DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A. 1979;76:2420-4 [PMC free article] [PubMed] [Google Scholar]

54. Melero JA, Stitt DT, Mangel WF, Carroll RB. Identification of new polypeptide species (48-55K) immunoprecipitable by antiserum to purified large T antigen and present in SV40-infected and -transformed cells. Virology. 1979;93:466-80 [PubMed] [Google Scholar]

55. Kress M, May E, Cassingena R, May P. Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol. 1979;31:472-83 [PMC free article] [PubMed] [Google Scholar]

56. Crawford LV, Pim DC, Bulbrook RD. Detection of antibodies against the cellular protein p53 in sera from patients with breast cancer. Int J Cancer. 1982;30:403-8 [PubMed] [Google Scholar]

57. Lubin R, Schlichtholz B, Teillaud JL, Garay E, Bussel A, Wild CP. p53 antibodies in patients with various types of cancer: assay, identification, and characterization. Clin Cancer Res. 1995;1:1463-9 [PubMed] [Google Scholar]

58. Soussi T. p53 Antibodies in the sera of patients with various types of cancer: a review. Cancer Res. 2000;60:1777-88 [PubMed] [Google Scholar]

59. Lubin R, Zalcman G, Bouchet L, et al. Serum p53 antibodies as early markers of lung cancer. Nat Med. 1995;1:701-2 [PubMed] [Google Scholar]

60. Schlichtholz B, Tredaniel J, Lubin R, Zalcman G, Hirsch A, Soussi T. Analyses of p53 antibodies in sera of patients with lung carcinoma define immunodominant regions in the p53 protein. Br J Cancer. 1994;69:809-16 [PMC free article] [PubMed] [Google Scholar]

61. von Brevern MC, Hollstein MC, Cawley HM, et al. Circulating anti-p53 antibodies in esophageal cancer patients are found predominantly in individuals with p53 core domain mutations in their tumors. Cancer Res. 1996;56:4917-21 [PubMed] [Google Scholar]

62. Ralhan R, Arora S, Chattopadhyay TK, Shukla NK, Mathur M. Circulating p53 antibodies, p53 gene mutational profile and product accumulation in esophageal squamous-cell carcinoma in India. Int J Cancer. 2000;85:791-5 [PubMed] [Google Scholar]

63. Ralhan R, Nath N, Agarwal S, Mathur M, Wasylyk B, Shukla NK. Circulating p53 antibodies as early markers of oral cancer: correlation with p53 alterations. Clin Cancer Res. 1998;4:2147-52 [PubMed] [Google Scholar]

64. Hammel P, Leroy-Viard K, Chaumette MT, et al. Correlations between p53-protein accumulation, serum antibodies and gene mutation in colorectal cancer. Int J Cancer. 1999;81:712-8 [PubMed] [Google Scholar]

65. Saffroy R, Lelong JC, Azoulay D, et al. Clinical significance of circulating anti-p53 antibodies in European patients with hepatocellular carcinoma. Br J Cancer. 1999;79:604-10 [PMC free article] [PubMed] [Google Scholar]

66. Tavassoli M, Brunel N, Maher R, Johnson NW, Soussi T. p53 antibodies in the saliva of patients with squamous cell carcinoma of the oral cavity. Int J Cancer. 1998;78:390-1 [PubMed] [Google Scholar]

67. Soussi T. Analysis of p53 gene alterations in cancer: a critical view. In: Pierre Hainaut KGW, editor. 25 years of p53 research. New York: Springer; 2005. p. 255-92 [Google Scholar]

68. Zalcman G, Schlichtholz B, Tredaniel J, et al. Monitoring of p53 autoantibodies in lung cancer during therapy: relationship to response to treatment. Clin Cancer Res. 1998;4:1359-66 [PubMed] [Google Scholar]

69. Cai HY, Wang XH, Tian Y, Gao LY, Zhang LJ, Zhang ZY. Changes of serum p53 antibodies and clinical significance of radiotherapy for esophageal squamous cell carcinoma. World J Gastroenterol. 2008;14:4082-6 [PMC free article] [PubMed] [Google Scholar]

70. Takeda A, Shimada H, Nakajima K, et al. Monitoring of p53 autoantibodies after resection of colorectal cancer: relationship to operative curability. Eur J Surg. 2001;167:50-3 [PubMed] [Google Scholar]

71. Kirk GD, Lesi OA, Mendy M, et al. 249(ser) TP53 mutation in plasma DNA, hepatitis B viral infection, and risk of hepatocellular carcinoma. Oncogene. 2005;24:5858-67 [PubMed] [Google Scholar]

72. Lecomte T, Ceze N, Dorval E, Laurent-Puig P. Circulating free tumor DNA and colorectal cancer. Gastroenterol Clin Biol. 2010;34:662-81 [PubMed] [Google Scholar]

73. Haug U, Wente MN, Seiler CM, Jesnowski R, Brenner H. Stool testing for the early detection of pancreatic cancer: rationale and current evidence. Expert Rev Mol Diagn. 2008;8:753-9 [PubMed] [Google Scholar]

74. Atkin W, Martin JP. Stool DNA-based colorectal cancer detection: finding the needle in the haystack. J Natl Cancer Inst. 2001;93:798-9 [PubMed] [Google Scholar]

75. Mao L. Genetic alterations as clonal markers for bladder cancer detection in urine. J Cell Biochem Suppl. 1996;25:191-6 [PubMed] [Google Scholar]

76. Sidransky D, Von Eschenbach A, Tsai YC, et al. Identification of p53 gene mutations in bladder cancers and urine samples. Science. 1991;252:706-9 [PubMed] [Google Scholar]

77. Boyle JO, Mao L, Brennan JA, et al. Gene mutations in saliva as molecular markers for head and neck squamous cell carcinomas. Am J Surg. 1994;168:429-32 [PubMed] [Google Scholar]

78. Mao L, Hruban RH, Boyle JO, Tockman M, Sidransky D. Detection of oncogene mutations in sputum precedes diagnosis of lung cancer. Cancer Res. 1994;54:1634-7 [PubMed] [Google Scholar]

79. Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356:215-21 [PubMed] [Google Scholar]

80. Attardi LD, Jacks T. The role of p53 in tumour suppression: lessons from mouse models. Cell Mol Life Sci. 1999;55:48-63 [PubMed] [Google Scholar]

81. Lang GA, Iwakuma T, Suh YA, et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell. 2004;119:861-72 [PubMed] [Google Scholar]

82. Heinlein C, Krepulat F, Lohler J, Speidel D, Deppert W, Tolstonog GV. Mutant p53(R270H) gain of function phenotype in a mouse model for oncogene-induced mammary carcinogenesis. Int J Cancer. 2008;122:1701-9 [PubMed] [Google Scholar]

83. Muller PA, Caswell PT, Doyle B, et al. Mutant p53 drives invasion by promoting integrin recycling. Cell. 2009;139:1327-41 [PubMed] [Google Scholar]

84. Adorno M, Cordenonsi M, Montagner M, et al. A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell. 2009;137:87-98 [PubMed] [Google Scholar]

85. Wang SP, Wang WL, Chang YL, et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol. 2009;11:694-704 [PubMed] [Google Scholar]

86. Chang CJ, Chao CH, Xia W, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 2011;13(3):317-23 [PMC free article] [PubMed] [Google Scholar]

87. Kogan-Sakin I, Tabach Y, Buganim Y, et al. Mutant p53(R175H) upregulates Twist1 expression and promotes epithelial-mesenchymal transition in immortalized prostate cells. Cell Death Differ. 2011;18:271-81 [PMC free article] [PubMed] [Google Scholar]

88. Muller PA, Vousden KH, Norman JC. p53 and its mutants in tumor cell migration and invasion. J Cell Biol. 2011;192:209-18 [PMC free article] [PubMed] [Google Scholar]

89. Bossi G, Marampon F, Maor-Aloni R, et al. Conditional RNA interference in vivo to study mutant p53 oncogenic gain of function on tumor malignancy. Cell Cycle. 2008;7:1870-9 [PubMed] [Google Scholar]

90. Milyavsky M, Tabach Y, Shats I, et al. Transcriptional programs following genetic alterations in p53, INK4A, and H-Ras genes along defined stages of malignant transformation. Cancer Res. 2005;65:4530-43 [PubMed] [Google Scholar]

91. Tabach Y, Milyavsky M, Shats I, et al. The promoters of human cell cycle genes integrate signals from two tumor suppressive pathways during cellular transformation. Mol Syst Biol. 2005;1:2005.0022 [PMC free article] [PubMed] [Google Scholar]

92. Brosh R, Shalgi R, Liran A, et al. p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol Syst Biol. 2008;4:229. [PMC free article] [PubMed] [Google Scholar]

93. Buganim Y, Solomon H, Rais Y, et al. p53 regulates the Ras circuit to inhibit the expression of a cancer-related gene signature by various molecular pathways. Cancer Res. 2010;70:2274-84 [PubMed] [Google Scholar]

94. Solomon H, Brosh R, Buganim Y, Rotter V. Inactivation of the p53 tumor suppressor gene and activation of the Ras oncogene: cooperative events in tumorigenesis. Discov Med. 2010;9:448-54 [PubMed] [Google Scholar]

95. Li FP, Fraumeni JF., Jr Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. J Natl Cancer Inst. 1969;43:1365-73 [PubMed] [Google Scholar]

96. Li FP, Fraumeni JF., Jr Soft-tissue sarcomas, breast cancer, and other neoplasms: a familial syndrome? Ann Intern Med. 1969;71:747-52 [PubMed] [Google Scholar]

97. Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990;348:747-9 [PubMed] [Google Scholar]

98. Varley JM, McGown G, Thorncroft M, et al. Are there low-penetrance TP53 alleles? Evidence from childhood adrenocortical tumors. Am J Hum Genet. 1999;65:995-1006 [PMC free article] [PubMed] [Google Scholar]

99. Birch JM, Blair V, Kelsey AM, et al. Cancer phenotype correlates with constitutional TP53 genotype in families with the Li-Fraumeni syndrome. Oncogene. 1998;17:1061-8 [PubMed] [Google Scholar]

100. Song H, Hollstein M, Xu Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol. 2007;9:573-80 [PubMed] [Google Scholar]

101. Olive KP, Tuveson DA, Ruhe ZC, et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell. 2004;119:847-60 [PubMed] [Google Scholar]

102. Terzian T, Suh YA, Iwakuma T, et al. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev. 2008;22:1337-44 [PMC free article] [PubMed] [Google Scholar]

103. Barak Y, Juven T, Haffner R, Oren M. Mdm2 expression is induced by wild type p53 activity. EMBO J. 1993;12:461-8 [PMC free article] [PubMed] [Google Scholar]

104. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296-9 [PubMed] [Google Scholar]

105. Knoepfler PS. Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells. 2009;27:1050-6 [PMC free article] [PubMed] [Google Scholar]

106. Ben-Porath I, Thomson MW, Carey VJ, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40:499-507 [PMC free article] [PubMed] [Google Scholar]

107. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275-84 [PubMed] [Google Scholar]

108. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105-11 [PubMed] [Google Scholar]

109. Molchadsky A, Rivlin N, Brosh R, Rotter V, Sarig R. p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis. 2010;31(9):1501-8 [PubMed] [Google Scholar]

110. Molchadsky A, Shats I, Goldfinger N, et al. p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. PLoS ONE. 2008;3:e3707. [PMC free article] [PubMed] [Google Scholar]

111. Shaulsky G, Goldfinger N, Rotter V. Alterations in tumor development in vivo mediated by expression of wild type or mutant p53 proteins. Cancer Res. 1991;51:5232-7 [PubMed] [Google Scholar]

112. Matas D, Milyavsky M, Shats I, Nissim L, Goldfinger N, Rotter V. p53 is a regulator of macrophage differentiation. Cell Death Differ. 2004;11:458-67 [PubMed] [Google Scholar]

113. Aloni-Grinstein R, Zan-Bar I, Alboum I, Goldfinger N, Rotter V. Wild type p53 functions as a control protein in the differentiation pathway of the B-cell lineage. Oncogene. 1993;8:3297-305 [PubMed] [Google Scholar]

114. Wang Y, Yang J, Zheng H, et al. Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell. 2009;15:514-26 [PMC free article] [PubMed] [Google Scholar]

115. Hong H, Takahashi K, Ichisaka T, et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature. 2009;460:1132-5 [PMC free article] [PubMed] [Google Scholar]

116. Kawamura T, Suzuki J, Wang YV, et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature. 2009;460:1140-4 [PMC free article] [PubMed] [Google Scholar]

117. Li H, Collado M, Villasante A, et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature. 2009;460:1136-9 [PMC free article] [PubMed] [Google Scholar]

118. Marion RM, Strati K, Li H, et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature. 2009;460:1149-53 [PMC free article] [PubMed] [Google Scholar]

119. Sarig R, Rivlin N, Brosh R, et al. Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med. 2010;207:2127-40 [PMC free article] [PubMed] [Google Scholar]

120. Takenaka C, Nishishita N, Takada N, Jakt LM, Kawamata S. Effective generation of iPS cells from CD34(+) cord blood cells by inhibition of p53. Exp Hematol. 2010;38(2):154-62 [PubMed] [Google Scholar]

121. Zhao Y, Yin X, Qin H, et al. Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell. 2008;3:475-9 [PubMed] [Google Scholar]