Which of the following best describes the effect of insulin binding to the receptor on the osteoblast cells?

21. Based on the information provided, which of the following best justifies theclaim that osteocalcin is a hormone?A). The phosphorylation of the insulin receptor causes a response inosteoblast bone cells.B).The osteoblasts in the bone secrete osteocalcin, which causes cells in thepancreas to change their activity.C).The change in expression ofEspchanges the insulin receptor activity ofthe osteoblast.D).The activation of the osteocalcin by a bone cell ispHdependent.

1. World Health Organization. Obesity: Preventing and Managing the Global Epidemic Report of a WHO Consultation Technical Report Series. World Health Organization, Geneva 2000. [PubMed]

2. Cefalu WT. Insulin resistance: cellular and clinical concepts. Exp Biol Med (Maywood) 2001;226:13–26. [PubMed] [Google Scholar]

3. Reaven G. The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinol Metab Clin North Am. 2004;33:283–303. [PubMed] [Google Scholar]

4. Bliss M. The history of insulin Diabetes Care. 1993;16(Suppl 3):4–7. [PubMed] [Google Scholar]

5. Home PD. Insulin therapy. In: Alberti KGMM, Zimmet P, Defronzo RA editors & Keen H (Hon) editor International Textbook of Diabetes Mellitus (2nd ed) John Wiley & Sons, New York; 1997 p. 899–928.

6. Dodson G, Steiner D. The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol. 1998;8:189–94. [PubMed] [Google Scholar]

7. Schroder D, Zuhlke H. Genetechnology, characterization of insulin gene and the relationship to diabetes research. Endokrinologie. 1982;79:197–209. [PubMed] [Google Scholar]

8. Malaisse WJ. Insulin biosynthesis and secretion in vitro. In: Alberti KGMM, Zimmet P, Defronzo RA & Keen H (Hon) editors. International Textbook of Diabetes Mellitus (2nd ed) John Wiley & Sons, New York; 1997 p. 315–36.

9. Porksen N, Hollingdal M, Juhl C, Butler P, Veldhuis JD, Schmitz O. Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes. 2002;51 (Suppl 1):S245–54. [PubMed] [Google Scholar]

10. Bratanova-Tochkova TK, Cheng H, Daniel S, et al. Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion. Diabetes. 2002;51 (Suppl. 1):S83–90. [PubMed] [Google Scholar]

11. Nielsen JH, Galsgaard ED, Moldrup A, et al. Regulation of beta-cell mass by hormones and growth factors. Diabetes. 2001;50 (Suppl 1):S25–9. [PubMed] [Google Scholar]

12. De Lonlay, Saudubray J-M. Persistent hyperinsulinaemic hypoglycaemia. In: Fernandes J, Sudubray J-M, van den Berghe editors Inborn Metabolic Diseases: Diagnosis and treatment. (3rd ed): Springer, Heidelberg Germany; 2000 p.117–26.

13. Soria B, Quesada I, Ropero AB, Pertusa JA, Martin F, Nadal A. Novel players in pancreatic islet signaling: from membrane receptors to nuclear channels. Diabetes. 2004;53 (Suppl 1):S86–91. [PubMed] [Google Scholar]

14. MacDonald PE, El-Kholy W, Riedel MJ, Salapatek AM, Light PE, Wheeler MB. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes. 2002;51 (Suppl 3):S434–42. [PubMed] [Google Scholar]

15. Havel PJ. Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Biol Med (Maywood) 2001;226:963–77. [PubMed] [Google Scholar]

16. Nielsen JH, Serup P. Molecular basis of islet development, growth and regeneration. Current Opinion in Endocrinology & Diabetes. 1998;5:97–107. [Google Scholar]

17. Kahn SE, McCulloch DK, Porte D. Insulin secretion in the normal and diabetic human. In: Alberti KGMM, Zimmet P, Defronzo RA, editors & Keen H, (hon) editor. International Textbook of Diabetes Mellitus. (2nd ed) John Wiley & Sons, New York; 1997 p. 337–54.

18. Chen M, Porte D., Jr The effect of rate and dose of glucose infusion on the acute insulin response in man. J Clin Endocrinol Metab. 1976;42:1168–75. [PubMed] [Google Scholar]

19. Liu Z, Barrett EJ. Human protein metabolism: its measurement and regulation. Am J Physiol Endocrinol Metab. 2002;283:E1105–12. [PubMed] [Google Scholar]

20. Amery CM, Nattrass M. Fatty acids and insulin secretion. Diabetes Obes Metab. 2000;2:213–21. [PubMed] [Google Scholar]

21. Frost GS, Brynes AE, Dhillo WS, Bloom SR, McBurney MI. The effects of fiber enrichment of pasta and fat content on gastric emptying, GLP-1, glucose, and insulin responses to a meal. Eur J Clin Nutr. 2003;57:293–8. [PubMed] [Google Scholar]

22. Reaven GM. Effects of differences in amount and kind of dietary carbohydrate on plasma glucose and insulin responses in man. Am J Clin Nutr. 1979;32:2568–78. [PubMed] [Google Scholar]

23. Wolever TM. The glycemic index. World Rev Nutr Diet. 1990;62:120–85. [PubMed] [Google Scholar]

24. Efendic S, Portwood N. Overview of incretin hormones. Horm Metab Res. 2004;36:742–6. [PubMed] [Google Scholar]

25. Kido Y, Nakae J, Accili D. The insulin receptor and its cellular targets. J Clin Endocrinol Metab. 2001;86:972–9. [PubMed] [Google Scholar]

26. Withers DJ, White M. Perspective: The insulin signaling system--a common link in the pathogenesis of type 2 diabetes. Endocrinology. 2000;141:1917–21. [PubMed] [Google Scholar]

27. Burks DJ, White MF. IRS proteins and beta-cell function. Diabetes. 2001;50 (Suppl 1):S140–5. [PubMed] [Google Scholar]

28. Hunter SJ, Garvey WT. Insulin action and insulin resistance: diseases involving defects in insulin receptors, signal transduction, and the glucose transport effector system. Am J Med. 1998;105:331–45. [PubMed] [Google Scholar]

29. Karam JH. Pancreatic Hormones and Diabetes Mellitus. In: Greenspan FS, Strewler GJ, editors. Basic and Clinical Endocrinology. Appleton & Lange, Stamford CT USA; 1997 p. 601–2.

30. Denton RM, Tavaré JM. Molecular basis of insulin action on intracellular metabolism. In: Alberti KGMM, Zimmet P, Defronzo RA, Keen H (Hon), editors. International Textbook of Diabetes Mellitus (2nd ed) John Wiley & Sons, New York; 1997 p. 469–88.

31. Clemmons DR. Structural and functional analysis of insulin-like growth factors. Br Med Bull. 1989;45:465–80. [PubMed] [Google Scholar]

32. Frystyk J, Ørskof H. IGFI, IGFII, IGF-binding proteins and diabetes. In: Alberti KGMM, Zimmet P, Defronzo RA, Keen H (hon), editors. International Textbook of Diabetes Mellitus (2nd ed) John Wiley & Sons, New York; 1997 p. 417–36.

33. Wheatcroft SB, Williams IL, Shah AM, Kearney MT. Pathophysiological implications of insulin resistance on vascular endothelial function. Diabet Med. 2003;20:255–68. [PubMed] [Google Scholar]

34. Smith U. Impaired (‘diabetic’) insulin signaling and action occur in fat cells long before glucose intolerance--is insulin resistance initiated in the adipose tissue? Int J Obes Relat Metab Disord. 2002;26:897–904. [PubMed] [Google Scholar]

35. Giorgino F, Laviola L, Eriksson JW. Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta Physiol Scand. 2005;183:13–30. [PubMed] [Google Scholar]

36. Halvatsiotis PG, Turk D, Alzaid A, Dinneen S, Rizza RA, Nair KS. Insulin effect on leucine kinetics in type 2 diabetes mellitus. Diabetes Nutr Metab. 2002;15:136–42. [PubMed] [Google Scholar]

37. Grundy SM. What is the contribution of obesity to the metabolic syndrome? Endocrinol Metab Clin North Am. 2004;33:267–82. [PubMed] [Google Scholar]

38. Krauss RM, Siri PW. Metabolic abnormalities: triglyceride and low-density lipoprotein. Endocrinol Metab Clin North Am. 2004;33:405–15. [PubMed] [Google Scholar]

39. Devaraj S, Rosenson RS, Jialal I. Metabolic syndrome: an appraisal of the pro-inflammatory and procoagulant status. Endocrinol Metab Clin North Am. 2004;33:431–53. [PubMed] [Google Scholar]

40. Stockhorst U, de Fries D, Steingrueber HJ, Scherbaum WA. Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration to humans. Physiol Behav. 2004;83:47–54. [PubMed] [Google Scholar]

41. Gerozissis K. Brain insulin and feeding: a bi-directional communication. Eur J Pharmacol. 2004;490:59–70. [PubMed] [Google Scholar]

42. Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs. 2003;17:27–45. [PubMed] [Google Scholar]

43. Kulkarni RN. The islet betal-cell. Int J Biochem Cell Biol. 2004;36:365–71. [PubMed] [Google Scholar]

44. Unger JW, Betz M. Insulin receptors and signal transduction proteins in the hypothalamo-hypophyseal system: are view on morphological findings and functional implications. Histol Histopathol. 1998;13:1215–24. [PubMed] [Google Scholar]

45. Unger JW, Lange W. Insulin receptors in the pituitary gland: morphological evidence for influence on opioid peptide-synthesizing cells. Cell Tissue Res. 1997;288:471–83. [PubMed] [Google Scholar]

46. Nagasaka Y, Kaneko T. [Molecular biology of regulation of renal function-structure, function and distribution of the receptor-insulin, glucagon] Nippon Rinsho. 1992;50:2921–4. [PubMed] [Google Scholar]

47. Sechi LA, Bartoli E. Molecular mechanisms of insulin resistance in arterial hypertension. Blood Pres Suppl. 1996;1:47–54. [PubMed] [Google Scholar]

48. Poretsky L, Kalin MF. The gonadotropic function of insulin. Endocr Rev. 1987;8:132–41. [PubMed] [Google Scholar]

49. Samoto T, Maruo T, Katayama K, Barnea ER, Mochizuk M. Altered expression of insulin and insulin-like growth factor-1 receptors in follicular and stromal compartments of polycystic ovaries. Endocr J. 1993;40:413–24. [PubMed] [Google Scholar]

50. Abele V, Pelletier G, Tremblay RR. Radioautographic localization and regulation of the insulin receptors in rat testis. J Recept Res. 1986;6:461–73. [PubMed] [Google Scholar]

51. Thomas DM, Udagawa N, Hards DK, et al. Insulin receptor expression in primary and cultured oseoclast-like cells. Bone. 1998;23:181–6. [PubMed] [Google Scholar]

52. Lichtenstein AH, Schwab US. Relationship of dietary fat to glucose metabolism. Atherosclerosis. 2000;150:227–43. [PubMed] [Google Scholar]

53. Bray GA, Lovejoy JC, Smith SR, et al. The Influence of Different Fats and Fatty Acids on Obesity, Insulin Resistance and Inflammation. J Nutr. 2002;132:2488–91. [PubMed] [Google Scholar]

54. Sampath H, Ntambi JM. Polyunsaturated fatty acid regulation of gene expression. Nutr Rev. 2004;62:333–9. [PubMed] [Google Scholar]

55. Simopoulos AP. Essential fatty acids in health and chronic disease. Am J Clin Nutr. 1999;70(3 Suppl):560S–569S. [PubMed] [Google Scholar]

56. Borkman M, Chisholm DJ, Furler SM, et al. Effects of fish oil supplementation on glucose and lipid metabolism in NIDDM. Diabetes. 1989;38:1314–9. [PubMed] [Google Scholar]

57. Friedberg CE, Janssen MJ, Heine RJ, Grobbee DE. Fish oil and glycemic control in diabetes. A meta-analysis. Diabetes Care. 1998;21:494–500. [PubMed] [Google Scholar]

58. Wolever TM. Dietary carbohydrates and insulin action in humans. Br J Nutr. 2000;83 (Suppl 1):S97–102. [PubMed] [Google Scholar]

59. Toida S, Takahashi M, Shimizu H, Sato N, Shimomura Y, Kobayashi I. Effect of high sucrose feeding on fat accumulation in the male Wistar rat. Obes Res. 1996;4:561–8. [PubMed] [Google Scholar]

60. Davy BM, Melby CL. The effect of fiber-rich carbohydrates on features of Syndrome X. J Am Diet Assoc. 2003;103:86–96. [PubMed] [Google Scholar]

61. Beck B, Villaume C, Bau HM, et al. Long-term influence of a wheat-bran supplemented diet on secretion of gastrointestinal hormones and on nutrient absorption in healthy man. Hum Nutr Clin Nutr. 1986;40:25–33. [PubMed] [Google Scholar]

62. Cani PD, Dewever C, Delzenne NM. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr. 2004;92:521–6. [PubMed] [Google Scholar]

63. Roberfroid M. Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Crit Rev Food Sci Nutr. 1993;33:103–48. Erratum in: Crit Rev Food Sci Nutr 1993;33:553. [PubMed] [Google Scholar]

64. Higgins JA. Resistant starch: metabolic effects and potential health benefits. J AOAC Int. 2004;87:761–8. [PubMed] [Google Scholar]

65. Linn T, Santosa B, Gronemeyer D, et al. Effect of long-term dietary protein intake on glucose metabolism in humans. Diabetologia. 2000;43:1257–65. [PubMed] [Google Scholar]

66. Greenfield JR, Samaras K, Hayward CS, Chisholm DJ, Campbell LV. Beneficial postprandial effect of a small amount of alcohol on diabetes and cardiovascular risk factors: Modification by Insulin Resistance. J Clin Endocrinol Metab. 2004 Nov 2 [Epub ahead of print] [PubMed]

67. Magis DC, Jandrain BJ, Scheen AJ. Alcohol, insulin sensitivity and diabetes. Rev Med Liege. 2003;58:501–7. [PubMed] [Google Scholar]

68. Anderson RA. Chromium, glucose intolerance and diabetes. J Am Coll Nutr. 1998;17:548–55. [PubMed] [Google Scholar]

69. Vincent JB. The biochemistry of chromium. J Nutr. 2000;130:715–8. [PubMed] [Google Scholar]

70. Fernandez-Real JM, Lopez-Bermejo A, Ricart W. Cross-talk between iron metabolism and diabetes. Diabetes. 2002;51:2348–54. [PubMed] [Google Scholar]

71. Bhathena SJ, Velasquez MT. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr. 2002;76:1191–201. [PubMed] [Google Scholar]

72. Broadhurst CL, Polansky MM, Anderson RA. Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. J Agric Food Chem. 2000;48:849–52. [PubMed] [Google Scholar]

73. Grassi D, Lippi C, Necozione, Desideri, Ferri C. Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. Am J Clin Nutr. 2005;81:611–4. [PubMed] [Google Scholar]

74. Tomás E, Zorzano A, Ruderman NB. Exercise and insulin signaling: a historical perspective. J Appl Physiol. 2002;93:765–72. [PubMed] [Google Scholar]

75. Manson JE, Nathan DM, Krolewski AS, Stampfer MJ, Willett WC, Hennekens CH. A prospective study of exercise and incidence of diabetes among US male physicians. JAMA. 1992;268:63–7. [PubMed] [Google Scholar]

76. Knowler WC, Barrett-Connor E, Fowler SE, et al. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. NEJM. 2002;346:393–403. [PMC free article] [PubMed] [Google Scholar]

77. Tuomilehto J, Lindstrom J, Eriksson JG, et al. Finnish Diabetes Prevention Study Group.. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–50. [PubMed] [Google Scholar]

78. Dohm GL. Regulation of skeletal muscle GLUT-4 expression by exercise. J Appl Physiol. 2002;93:782–7. [PubMed] [Google Scholar]

79. Henriksen EJ. Effects of acute exercise and exercise training on insulin resistance. J Appl Physiol. 2002;93:788–96. [PubMed] [Google Scholar]

80. Juleen R. Zierath. Exercise training-induced changes in insulin signaling in skeletal muscle. J Appl Physiol. 2002;93:773–81. [PubMed] [Google Scholar]

81. Van den Berghe G. How does blood glucose control with insulin save lives in intensive care? J Clin Invest. 2004;114:1187–95. [PMC free article] [PubMed] [Google Scholar]

82. Marette A. Mediators of cytokine-induced insulin resistance in obesity and other inflammatory settings. Curr Opin Clin Nutr Metab Care. 2002;5:377–83. [PubMed] [Google Scholar]

83. Rosmond R. Role of stress in the pathogenesis of the metabolic syndrome. Psychoneuroendocrinology. 2005;30:1–10. [PubMed] [Google Scholar]

84. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354:1435–9. [PubMed] [Google Scholar]

85. Vgontzas AN, Mastorakos G, Bixler EO, Kales A, Gold PW, Chrousos GP. Sleep deprivation effects on the activity of the hypothalamic-pituitary-adrenal and growth axes: potential clinical implications. Clin Endocrinol (Oxf) 1999;51:205–15. [PubMed] [Google Scholar]

86. Vorona RD, Winn MP, Babineau TW, Eng BP, Feldman HR, Ware JC. Overweight and obese patients in a primary care population report less sleep than patients with a normal body mass index. Arch Intern Med. 2005;165:25–30. [PubMed] [Google Scholar]

87. Spiegel K, Tasali E, Penev P, Van Cauter E. Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141:846–50. [PubMed] [Google Scholar]

88. Mullington J, Hermann D, Holsboer F, Pollmacher T. Age-dependent suppression of nocturnal growth hormone levels during sleep deprivation. Neuroendocrinology. 1996;64:233–41. [PubMed] [Google Scholar]

89. Hew FL, O’Neal D, Kamarudin N, Alford FP, Best JD. Growth hormone deficiency and cardiovascular risk. Baillieres Clin Endocrinol Metab. 1998;12:199–216. [PubMed] [Google Scholar]

90. Tassone F, Lanfranco F, Gianotti L, et al. Obstructive sleep apnoea syndrome impairs insulin sensitivity independently of anthropometric variables. Clin Endocrinol (Oxf) 2003;59:374–9. [PubMed] [Google Scholar]

91. Yee B, Liu P, Philips C, Grunstein R. Neuroendocrine changes in sleep apnea. Curr Opin Pulm Med. 2004;10:475–81. [PubMed] [Google Scholar]

92. Butte NF. Carbohydrate and lipid metabolism in pregnancy:normal compared with gestational diabetes mellitus. Am J Clin Nutr. 2000;71(suppl):1256S–61S. [PubMed] [Google Scholar]

93. Seely EW, Solomon CG. Insulin resistance and its potential role in pregnancy-induced hypertension. J Clin Endocrinol Metab. 2003;88:2393–8. [PubMed] [Google Scholar]

94. Vague J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. 1956. Obes Res. 1996;4:204–12. [PubMed] [Google Scholar]

95. Aronne LJ, Segal KR. Adiposity and fat distribution outcome measures: assessment and clinical implications. Obes Res. 2002;10 (Suppl 1):14S–21S. [PubMed] [Google Scholar]

96. Tomlinson JW, Sinha B, Bujalska I, Hewison M, Stewart PM. Expression of 11 beta-hydroxysteroid dehydrogenase type 1 in adipose tissue is not increased in human obesity. J Clin Endocrinol Metab. 2002;87:5630–5. [PubMed] [Google Scholar]

97. Perseghin G, Petersen K, Shulman GI. Cellular mechanism of insulin resistance: potential links with inflammation. Int J Obes Relat Metab Disord. 2003;27 (Suppl 3):S6–11. [PubMed] [Google Scholar]

98. Jansson PA, Pellme F, Hammarstedt A, et al. A novel cellular marker of insulin resistance and early atherosclerosis in humans is related to impaired fat cell differentiation and low adiponectin. FASEB J. 2003;17:1434–40. [PubMed] [Google Scholar]

99. Reaven GM. Importance of identifying the overweight patient who will benefit the most by losing weight. Ann Intern Med. 2003;138:420–3. [PubMed] [Google Scholar]

100. Bressler P, De Fronzo RA. In: Alberti KGMM, Zimmet P, Defronzo RA, Keen H (hon), editors. International Textbook of Diabetes Mellitus (2nd ed) John Wiley & Sons, New York; 1997 p. 213–54.

101. Ananth J, Parameswaran S, Gunatilake S. Side effects of atypical antipsychotic drugs. Curr Pharm Des. 2004;10:2219–29. [PubMed] [Google Scholar]

102. Chen D, Misra A, Garg A. Lipodystrophy in human immunodeficiency virus-infected patients. J Clin Endocrinol Metab. 2002;87:4845–56. [PubMed] [Google Scholar]

103. Lebovitz HE. Oral antidiabetic agents. Med Clin North Am. 2004;88:847–63. ix-x. [PubMed] [Google Scholar]

104. Ehrmann DA. Polycystic ovary syndrome. N Engl J Med. 2005;352:1223–36. [PubMed] [Google Scholar]

105. Fernandez J, Smit GPA. The glycogen storage diseases. In: Fernandes J, Sudubray J-M, van den Berghe, editors. Inborn Metabolic Diseases: Diagnosis and treatment. (3rd ed). Springer, Heidelberg Germany; 2000 p. 86–101.

106. Garg A, Misra A. Lipodystrophies: rare disorders causing metabolic syndrome. Endocrinol Metab Clin North Am. 2004;33:305–31. [PubMed] [Google Scholar]

107. Maassen JA, Hart LM, Van Essen E, et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes. 2004;53 (Suppl 1):S103–9. [PubMed] [Google Scholar]

108. Panetta J, Smith LJ, Boneh A. Effect of high-dose vitamins, coenzyme Q and high-fat diet in paediatric patients with mitochondrial diseases. J Inherit Metab Dis. 2004;27:487–98. [PubMed] [Google Scholar]

109. Pedersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350:660–71. [PMC free article] [PubMed] [Google Scholar]

110. Giacchero R, Fiorir L, Scaglioni S, Sala M, Giovanni M. Insuline resistance and pancreatic function in glycogen storage disease Type 1. J Inherit Metab Dis. 2003;26(suppl 2):124. [Google Scholar]

111. Scheuner MT, Raffel LJ, Rotter JI. Genetics of Diabetes. In: Alberti KGMM, Zimmet P, Defronzo RA, Keen H (hon), editors. International Textbook of Diabetes Mellitus (2nd ed) John Wiley & Sons, New York; 1997 p. 37–88.

112. Bornstein J. A technique for the assay of small quantities of insulin using alloxan diabetic, hypophysectomized, adrenalectomized rats. Aust J Exp Biol Med Sci. 1950;28:87–91. [PubMed] [Google Scholar]

113. Yalow, RS, Berson SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest. 1960;39:1157–75. [PMC free article] [PubMed] [Google Scholar]

114. Bjorntorp P. Do stress reactions cause abdominal obesity and comorbidities? Obes Rev. 2001;2:73–86. [PubMed] [Google Scholar]

115. Bass J, Turek FW. Sleepless in America: a pathway to obesity and the metabolic syndrome? Arch Intern Med. 2005;165:15–6. [PubMed] [Google Scholar]

116. Grundy SM. What is the contribution of obesity to the metabolic syndrome? Endocrinol Metab Clin North Am. 2004;33:267–82. [PubMed] [Google Scholar]

117. Reaven GM. Insulin resistance/compensatory hyperinsulinemia, essential hypertension, and cardiovascular disease. J Clin Endocrinol Metab. 2003;88:2399–403. [PubMed] [Google Scholar]

118. Wang CC, Goalstone ML, Draznin B. Molecular mechanisms of insulin resistance that impact cardiovascular biology. Diabetes. 2004;53:2735–40. [PubMed] [Google Scholar]

119. Shinozaki K, Kashiwagi A, Masada M, Okamura T. Molecular mechanisms of impaired endothelial function associated with insulin resistance. Curr Drug Targets Cardiovasc Haematol Disord. 2004;4:1–11. [PubMed] [Google Scholar]

120. Jacobs HS, Conway GS. Leptin, polycystic ovaries and polycystic ovary syndrome. Hum Reprod Update. 1999;5:166–71. [PubMed] [Google Scholar]

121. Angulo P, Lindor KD. Non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2002;17 (Suppl):S186–90. [PubMed] [Google Scholar]

122. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4:579–91. [PubMed] [Google Scholar]

123. Komninou D, Ayonote A, Richie JP, Jr, Rigas B. Insulin resistance and its contribution to colon carcinogenesis. Exp Biol Med (Maywood) 2003;228:396–405. [PubMed] [Google Scholar]

124. Kaaks R. Nutrition, hormones, and breast cancer: is insulin the missing link? Cancer Causes Control. 1996;7:605–25. [PubMed] [Google Scholar]

125. Lanfranco F, Gianotti L, Pivetti S, et al. Obese patients with obstructive sleep apnoea syndrome show a peculiar alteration of the corticotroph but not of the thyrotroph and lactotroph function. Clin Endocrinol (Oxf) 2004;60:41–8. [PubMed] [Google Scholar]

126. Wilcox I, McNamara SG, Collins FL, Grunstein RR, Sullivan CE. “Syndrome Z”: the interaction of sleep apnoea, vascular risk factors and heart disease. Thorax. 1998;53 (Suppl 3):S25–8. [PMC free article] [PubMed] [Google Scholar]

127. Chin K, Shimizu K, Nakamura T, et al. Changes in intra-abdominal visceral fat and serum leptin levels in patients with obstructive sleep apnea syndrome following nasal continuous positive airway pressure therapy. Circulation. 1999;100:706–12. [PubMed] [Google Scholar]

128. Sapin R. Insulin assays: previously known and new analytical features. Clin Lab. 2003;49:113–21. [PubMed] [Google Scholar]

129. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27:1487. [PubMed] [Google Scholar]

130. Wallace TM, Matthews DR. The assessment of insulin resistance in man. Diabet Med. 2002;19:527–34. [PubMed] [Google Scholar]

131. Sikaris KA. The clinical biochemistry of obesity. Clin Biochem Rev. 2004;25:165–82. [PMC free article] [PubMed] [Google Scholar]

132. Belfiore F, Ianello S, Volpicelli G. Insulin sensitivity indices calculated from basal and OGTT-induced insulin, glucose and FFA levels. Mol Genet Metab. 1998;63:134–41. [PubMed] [Google Scholar]

133. McLaughlin T, Abbasi F, Cheal K, Chu J, Lamendola C, Reaven G. Use of metabolic markers to identify overweight individuals who are insulin resistant. Ann Intern Med. 2003;139:802–9. [PubMed] [Google Scholar]

Page 2

Mediators of insulin secretion.

StimulusNutrientHormoneNeural
StimulatoryGlucoseGrowth hormoneβ-adrenergic
Amino acidsGlucagonVagal
(Ketones)GLP-1(parasympathetic)
GIP
Secretin
Cholecystokinin
Gastrin
VIP
Gastrin releasing peptide
InhibitoryAdrenocorticosteroidsα-adrenergic
Somatostatin
Adrenalin
Noradrenalin
Galanin
Neuropeptide Y
Calcitonin gene-related peptide
(CGRP)
Prostaglandin E

Última postagem

Tag