Which component in the figure above represents a protein fiber of the extracellular matrix?

  1. Karamanos NK, Tzanakakis GN. Glycosaminoglycans: from “cellular glue” to novel therapeutical agents. Curr Opin Pharmacol. 2012;12:220–2.

    Article  CAS  PubMed  Google Scholar 

  2. Mecham RP. Overview of extracellular matrix. Curr. Protoc. Cell Biol. Editor. Board Juan Bonifacino Al. 2012;Chapter 10:Unit 10.1.

  3. Lieleg O, Baumgärtel RM, Bausch AR. Selective filtering of particles by the extracellular matrix: an electrostatic bandpass. Biophys J. 2009;97:1569–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosso F, Giordano A, Barbarisi M, Barbarisi A. From cell-ECM interactions to tissue engineering. J Cell Physiol. 2004;199:174–80.

    Article  CAS  PubMed  Google Scholar 

  6. Sorokin L. The impact of the extracellular matrix on inflammation. Nat Rev Immunol. 2010;10:712–23.

    Article  CAS  PubMed  Google Scholar 

  7. Afratis N, Gialeli C, Nikitovic D, Tsegenidis T, Karousou E, Theocharis AD, et al. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J. 2012;279:1177–97.

    Article  CAS  PubMed  Google Scholar 

  8. Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol. 2010;341:126–40.

    Article  CAS  PubMed  Google Scholar 

  9. Nikitovic D, Aggelidakis J, Young MF, Iozzo RV, Karamanos NK, Tzanakakis GN. The biology of small leucine-rich proteoglycans in bone pathophysiology. J Biol Chem. 2012;287:33926–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rowe RG, Weiss SJ. Breaching the basement membrane: who, when and how? Trends Cell Biol. 2008;18:560–74.

    Article  CAS  PubMed  Google Scholar 

  11. Lokmic Z, Lämmermann T, Sixt M, Cardell S, Hallmann R, Sorokin L. The extracellular matrix of the spleen as a potential organizer of immune cell compartments. Semin Immunol. 2008;20:4–13.

    Article  CAS  PubMed  Google Scholar 

  12. Zelenski NA, Leddy HA, Sanchez-Adams J, Zhang J, Bonaldo P, Liedtke W, et al. Type VI Collagen Regulates Pericellular Matrix Properties, Chondrocyte Swelling, and Mechanotransduction in Mouse Articular Cartilage. Arthritis Rheumatol Hoboken NJ. 2015;67:1286–94.

    Article  CAS  Google Scholar 

  13. Paulsson M. Basement membrane proteins: structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol. 1992;27:93–127.

    Article  CAS  PubMed  Google Scholar 

  14. Yurchenco PD. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol. 2011;3(2):a004911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Martin GR, Timpl R. Laminin and other basement membrane components. Annu Rev Cell Biol. 1987;3:57–85.

    Article  CAS  PubMed  Google Scholar 

  16. Nikitovic D, Corsini E, Kouretas D, Tsatsakis A, Tzanakakis G. ROS-major mediators of extracellular matrix remodeling during tumor progression. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2013;61:178–86.

    CAS  Google Scholar 

  17. Nikitovic D, Juranek I, Wilks MF, Tzardi M, Tsatsakis A, Tzanakakis GN. Anthracycline-dependent cardiotoxicity and extracellular matrix remodeling. Chest. 2014;146:1123–30.

    Article  PubMed  Google Scholar 

  18. Nourshargh S, Hordijk PL, Sixt M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol. 2010;11:366–78.

    Article  CAS  PubMed  Google Scholar 

  19. Nikitovic D, Berdiaki A, Galbiati V, Kavasi R-M, Papale A, Tsatsakis A, et al. Hyaluronan regulates chemical allergen-induced IL-18 production in human keratinocytes. Toxicol Lett. 2015;232:89–97.

    Article  CAS  PubMed  Google Scholar 

  20. Nikitovic D, Papoutsidakis A, Karamanos NK, Tzanakakis GN. Lumican affects tumor cell functions, tumor-ECM interactions, angiogenesis and inflammatory response. Matrix Biol. J. Int. Soc. Matrix Biol. 2014;35:206–14.

    Article  CAS  PubMed  Google Scholar 

  21. Hansen U, Allen JM, White R, Moscibrocki C, Bruckner P, Bateman JF, et al. WARP interacts with collagen VI-containing microfibrils in the pericellular matrix of human chondrocytes. PLoS One. 2012;7:e52793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Villone D, Fritsch A, Koch M, Bruckner-Tuderman L, Hansen U, Bruckner P. Supramolecular interactions in the dermo-epidermal junction zone: anchoring fibril-collagen VII tightly binds to banded collagen fibrils. J Biol Chem. 2008;283:24506–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Piperigkou Z, Karamanou K, Engin AB, Gialeli C, Docea AO, Vynios DH, et al. Emerging aspects of nanotoxicology in health and disease: From agriculture and food sector to cancer therapeutics. Food Chem Toxicol. 2016;91:42–57.

    Article  CAS  PubMed  Google Scholar 

  24. Stylianopoulos T, Poh M-Z, Insin N, Bawendi MG, Fukumura D, Munn LL, et al. Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J. 2010;99:1342–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kononenko V, Narat M, Drobne D. Nanoparticle interaction with the immune system. Arh Hig Rada Toksikol. 2015;66:97–108.

    Article  CAS  PubMed  Google Scholar 

  26. Maquieira Á, Brun EM, Garcés-García M, Puchades R. Aluminum oxide nanoparticles as carriers and adjuvants for eliciting antibodies from non-immunogenic haptens. Anal Chem. 2012;84:9340–8.

    CAS  PubMed  Google Scholar 

  27. Mair LO, Superfine R. Single particle tracking reveals biphasic transport during nanorod magnetophoresis through extracellular matrix. Soft Matter. 2014;10:4118–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shah C, Yang G, Lee I, Bielawski J, Hannun YA, Samad F. Protection from high fat diet-induced increase in ceramide in mice lacking plasminogen activator inhibitor 1. J Biol Chem. 2008;283:13538–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pluen A, Boucher Y, Ramanujan S, McKee TD, Gohongi T, di Tomaso E, et al. Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc Natl Acad Sci U S A. 2001;98:4628–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scott JE, Dyne KM, Thomlinson AM, Ritchie M, Bateman J, Cetta G, et al. Human cells unable to express decoron produced disorganized extracellular matrix lacking “shape modules” (interfibrillar proteoglycan bridges). Exp Cell Res. 1998;243:59–66.

    Article  CAS  PubMed  Google Scholar 

  31. Vllasaliu D, Falcone FH, Stolnik S, Garnett M. Basement membrane influences intestinal epithelial cell growth and presents a barrier to the movement of macromolecules. Exp Cell Res. 2014;323:218–31.

    Article  CAS  PubMed  Google Scholar 

  32. Kharaziha M, Fathi MH, Edris H. Development of novel aligned nanofibrous composite membranes for guided bone regeneration. J Mech Behav Biomed Mater. 2013;24:9–20.

    Article  CAS  PubMed  Google Scholar 

  33. Walters R, Medintz IL, Delehanty JB, Stewart MH, Susumu K, Huston AL, et al. The Role of Negative Charge in the Delivery of Quantum Dots to Neurons. ASN Neuro. 2015;7(4):1759091415592389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Schaufler V, Czichos-Medda H, Hirschfeld-Warnecken V, Neubauer S, Rechenmacher F, Medda R, et al. Selective binding and lateral clustering of α5β1 and αvβ3 integrins: Unraveling the spatial requirements for cell spreading and focal adhesion assembly. Cell Adhes Migr. 2016;10:505–15.

    Article  CAS  Google Scholar 

  35. Wolfram T, Spatz JP, Burgess RW. Cell adhesion to agrin presented as a nanopatterned substrate is consistent with an interaction with the extracellular matrix and not transmembrane adhesion molecules. BMC Cell Biol. 2008;9:64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, et al. Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci. 2008;33:105–16.

    Article  CAS  PubMed  Google Scholar 

  37. Neagu M, Piperigkou Z, Karamanou K, Engin AB, Docea AO, Constantin C, et al. Protein bio-corona: critical issue in immune nanotoxicology. Arch. Toxicol. 2017;91(3):1031–48.

    Article  CAS  PubMed  Google Scholar 

  38. Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ, et al. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale. 2011;3:410–20.

    Article  CAS  PubMed  Google Scholar 

  39. Baek M, Kim I-S, Yu J, Chung HE, Choy J-H, Choi S-J. Effect of different forms of anionic nanoclays on cytotoxicity. J Nanosci Nanotechnol. 2011;11:1803–6.

    Article  CAS  PubMed  Google Scholar 

  40. Yan M, Zhang Z, Cui S, Zhang X, Chu W, Lei M, et al. Preparation and evaluation of PEGylated phospholipid membrane coated layered double hydroxide nanoparticles. Asian J Pharm Sci. 2016;11:396–403.

    Article  Google Scholar 

  41. Lausen M, Lynch N, Schlosser A, Tornoe I, Saekmose SG, Teisner B, et al. Microfibril-associated protein 4 is present in lung washings and binds to the collagen region of lung surfactant protein D. J Biol Chem. 1999;274:32234–40.

    Article  CAS  PubMed  Google Scholar 

  42. Kasper JY, Feiden L, Hermanns MI, Bantz C, Maskos M, Unger RE, et al. Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air-blood barrier model. Beilstein J. Nanotechnol. 2015;6:517–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kumari A, Yadav SK. Cellular interactions of therapeutically delivered nanoparticles. Expert Opin Drug Deliv. 2011;8:141–51.

    Article  PubMed  CAS  Google Scholar 

  44. Hühn D, Kantner K, Geidel C, Brandholt S, De Cock I, Soenen SJH, et al. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano. 2013;7:3253–63.

    Article  PubMed  CAS  Google Scholar 

  45. Dimitrov DS. Engineered CH2 domains (nanoantibodies). MAbs. 2009;1:26–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang S, Moustafa Y, Huo Q. Different interaction modes of biomolecules with citrate-capped gold nanoparticles. ACS Appl Mater Interfaces. 2014;6:21184–92.

    Article  CAS  PubMed  Google Scholar 

  47. Ludwig A, Poller WC, Westphal K, Minkwitz S, Lättig-Tünnemann G, Metzkow S, et al. Rapid binding of electrostatically stabilized iron oxide nanoparticles to THP-1 monocytic cells via interaction with glycosaminoglycans. Basic Res Cardiol. 2013;108:328.

    Article  PubMed  CAS  Google Scholar 

  48. Fleischer CC, Payne CK. Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes. J Phys Chem B. 2012;116:8901–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rath G, Hussain T, Chauhan G, Garg T, Goyal AK. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J Drug Target. 2016;24:520–9.

    Article  CAS  PubMed  Google Scholar 

  50. Landriscina A, Musaev T, Rosen J, Ray A, Nacharaju P, Nosanchuk JD, et al. N-acetylcysteine S-nitrosothiol Nanoparticles Prevent Wound Expansion and Accelerate Wound Closure in a Murine Burn Model. J Drugs Dermatol JDD. 2015;14:726–32.

    CAS  PubMed  Google Scholar 

  51. Li J, Liu Y, Xu H, Fu Q. Nanoparticle-Delivered IRF5 siRNA Facilitates M1 to M2 Transition, Reduces Demyelination and Neurofilament Loss, and Promotes Functional Recovery After Spinal Cord Injury in Mice. Inflammation. 2016;39:1704–17.

    Article  CAS  PubMed  Google Scholar 

  52. Han G, Nguyen LN, Macherla C, Chi Y, Friedman JM, Nosanchuk JD, et al. Nitric oxide-releasing nanoparticles accelerate wound healing by promoting fibroblast migration and collagen deposition. Am J Pathol. 2012;180:1465–73.

    Article  CAS  PubMed  Google Scholar 

  53. Head BP, Patel HH, Insel PA. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim Biophys Acta. 1838;2014:532–45.

    Google Scholar 

  54. Tani M, Ito M, Igarashi Y. Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space. Cell Signal. 2007;19:229–37.

    Article  CAS  PubMed  Google Scholar 

  55. Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol. 2002;184:172–9.

    Article  CAS  PubMed  Google Scholar 

  56. Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res. 2006;7:53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Peuschel H, Sydlik U, Grether-Beck S, Felsner I, Stöckmann D, Jakob S, et al. Carbon nanoparticles induce ceramide- and lipid raft-dependent signalling in lung epithelial cells: a target for a preventive strategy against environmentally-induced lung inflammation. Part Fibre Toxicol. 2012;9:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guéguinou M, Gambade A, Félix R, Chantôme A, Fourbon Y, Bougnoux P, et al. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids? Biochim Biophys Acta. 1848;2015:2603–20.

    Google Scholar 

  59. Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9:537–49.

    Article  CAS  PubMed  Google Scholar 

  60. Lu M, Gursky O. Aggregation and fusion of low-density lipoproteins in vivo and in vitro. Biomol Concepts. 2013;4:501–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tabas I, Li Y, Brocia RW, Xu SW, Swenson TL, Williams KJ. Lipoprotein lipase and sphingomyelinase synergistically enhance the association of atherogenic lipoproteins with smooth muscle cells and extracellular matrix. A possible mechanism for low density lipoprotein and lipoprotein(a) retention and macrophage foam cell formation. J Biol Chem. 1993;268:20419–32.

    CAS  PubMed  Google Scholar 

  62. Adjei IM, Sharma B, Labhasetwar V. Nanoparticles: cellular uptake and cytotoxicity. Adv Exp Med Biol. 2014;811:73–91.

    Article  PubMed  Google Scholar 

  63. Vasir JK, Labhasetwar V. Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials. 2008;29:4244–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin J, Zhang H, Chen Z, Zheng Y. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano. 2010;4:5421–9.

    Article  CAS  PubMed  Google Scholar 

  65. El Ouahabi A, Thiry M, Pector V, Fuks R, Ruysschaert JM, Vandenbranden M. The role of endosome destabilizing activity in the gene transfer process mediated by cationic lipids. FEBS Lett. 1997;414:187–92.

    Article  PubMed  Google Scholar 

  66. Klotzsch E, Stiegler J, Ben-Ishay E, Gaus K. Do mechanical forces contribute to nanoscale membrane organisation in T cells? Biochim Biophys Acta. 1853;2015:822–9.

    Google Scholar 

  67. Brown DM, Hutchison L, Donaldson K, Stone V. The effects of PM10 particles and oxidative stress on macrophages and lung epithelial cells: modulating effects of calcium-signaling antagonists. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007;292:L1444–51.

    CAS  Google Scholar 

  68. Di Cristo L, Movia D, Bianchi MG, Allegri M, Mohamed BM, Bell AP, et al. Proinflammatory Effects of Pyrogenic and Precipitated Amorphous Silica Nanoparticles in Innate Immunity Cells. Toxicol. Sci. Off. J. Soc. Toxicol. 2016;150:40–53.

    Article  CAS  Google Scholar 

  69. Noël C, Simard J-C, Girard D. Gold nanoparticles induce apoptosis, endoplasmic reticulum stress events and cleavage of cytoskeletal proteins in human neutrophils. Toxicol. Vitro Int. J. Publ. Assoc. BIBRA. 2016;31:12–22.

    Google Scholar 

  70. Jones AL, Hulett MD, Parish CR. Histidine-rich glycoprotein: A novel adaptor protein in plasma that modulates the immune, vascular and coagulation systems. Immunol Cell Biol. 2005;83:106–18.

    Article  CAS  PubMed  Google Scholar 

  71. Jones AL, Hulett MD, Parish CR. Histidine-rich glycoprotein binds to cell-surface heparan sulfate via its N-terminal domain following Zn2+ chelation. J Biol Chem. 2004;279:30114–22.

    Article  CAS  PubMed  Google Scholar 

  72. Fedeli C, Segat D, Tavano R, Bubacco L, De Franceschi G, de Laureto PP, et al. The functional dissection of the plasma corona of SiO2-NPs spots histidine rich glycoprotein as a major player able to hamper nanoparticle capture by macrophages. Nanoscale. 2015;7:17710–28.

    Article  CAS  PubMed  Google Scholar 

  73. Ben-Arie N, Kedmi R, Peer D. Integrin-targeted nanoparticles for siRNA delivery. Methods Mol Biol Clifton NJ. 2012;757:497–507.

    Article  CAS  Google Scholar 

  74. Sydlik U, Bierhals K, Soufi M, Abel J, Schins RPF, Unfried K. Ultrafine carbon particles induce apoptosis and proliferation in rat lung epithelial cells via specific signaling pathways both using EGF-R. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006;291:L725–33.

    CAS  Google Scholar 

  75. Unfried K, Sydlik U, Bierhals K, Weissenberg A, Abel J. Carbon nanoparticle-induced lung epithelial cell proliferation is mediated by receptor-dependent Akt activation. Am J Physiol Lung Cell Mol Physiol. 2008;294:L358–67.

    Article  CAS  PubMed  Google Scholar 

  76. New DC, Wu K, Kwok AWS, Wong YH. G protein-coupled receptor-induced Akt activity in cellular proliferation and apoptosis. FEBS J. 2007;274:6025–36.

    Article  CAS  PubMed  Google Scholar 

  77. Singh RP, Ramarao P. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett. 2012;213:249–59.

    Article  CAS  PubMed  Google Scholar 

  78. Mustonen A-M, Nieminen P, Joukainen A, Jaroma A, Kääriäinen T, Kröger H, et al. First in vivo detection and characterization of hyaluronan-coated extracellular vesicles in human synovial fluid. J Orthop Res Off Publ Orthop Res Soc. 2016;34:1960–8.

    Article  CAS  Google Scholar 

  79. Null NG, Gundogan B, Tan A, Farhatnia Y, Wu W, Rajadas J, et al. Exosomes as immunotheranostic nanoparticles. Clin Ther. 2014;36:820–9.

    Article  CAS  Google Scholar 

  80. Zhu M, Tian X, Song X, Li Y, Tian Y, Zhao Y, et al. Nanoparticle-induced exosomes target antigen-presenting cells to initiate Th1-type immune activation. Small Weinh Bergstr Ger. 2012;8:2841–8.

    Article  CAS  Google Scholar 

  81. Wang H, Wu L, Reinhard BM. Scavenger receptor mediated endocytosis of silver nanoparticles into J774A.1 macrophages is heterogeneous. ACS Nano. 2012;6:7122–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hoppstädter J, Seif M, Dembek A, Cavelius C, Huwer H, Kraegeloh A, et al. M2 polarization enhances silica nanoparticle uptake by macrophages. Front Pharmacol. 2015;6:55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Galili U. Acceleration of wound healing by α-gal nanoparticles interacting with the natural anti-Gal antibody. J Immunol Res. 2015;2015:589648.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wigglesworth KM, Racki WJ, Mishra R, Szomolanyi-Tsuda E, Greiner DL, Galili U. Rapid recruitment and activation of macrophages by anti-Gal/α-Gal liposome interaction accelerates wound healing. J Immunol Baltim Md 1950. 2011;186:4422–32.

    CAS  Google Scholar 

  85. Kim M-S, Song HJ, Lee SH, Lee CK. Comparative study of various growth factors and cytokines on type I collagen and hyaluronan production in human dermal fibroblasts. J Cosmet Dermatol. 2014;13:44–51.

    Article  PubMed  Google Scholar 

  86. Vorstenbosch J, Gallant-Behm C, Trzeciak A, Roy S, Mustoe T, Philip A. Transgenic mice overexpressing CD109 in the epidermis display decreased inflammation and granulation tissue and improved collagen architecture during wound healing. Wound Repair Regen. Off. Publ. Wound Heal. Soc. Eur. Tissue Repair Soc. 2013;21:235–46.

    Google Scholar 

  87. Rangasamy S, Tak YK, Kim S, Paul A, Song JM. Bifunctional Therapeutic High-Valence Silver-Pyridoxine Nanoparticles with Proliferative and Antibacterial Wound-Healing Activities. J Biomed Nanotechnol. 2016;12:182–96.

    Article  CAS  PubMed  Google Scholar 

  88. Kwan KHL, Liu X, To MKT, Yeung KWK, Ho C, Wong KKY. Modulation of collagen alignment by silver nanoparticles results in better mechanical properties in wound healing. Nanomedicine Nanotechnol Biol Med. 2011;7:497–504.

    Article  CAS  Google Scholar 

  89. Anderson DS, Patchin ES, Silva RM, Uyeminami DL, Sharmah A, Guo T, et al. Influence of particle size on persistence and clearance of aerosolized silver nanoparticles in the rat lung. Toxicol Sci Off J Soc Toxicol. 2015;144:366–81.

    Article  CAS  Google Scholar 

  90. Lindroos PM, Coin PG, Badgett A, Morgan DL, Bonner JC. Alveolar macrophages stimulated with titanium dioxide, chrysotile asbestos, and residual oil fly ash upregulate the PDGF receptor-alpha on lung fibroblasts through an IL-1beta-dependent mechanism. Am J Respir Cell Mol Biol. 1997;16:283–92.

    Article  CAS  PubMed  Google Scholar 

  91. Richards CD. Innate Immune Cytokines, Fibroblast Phenotypes, and Regulation of Extracellular Matrix in Lung. J. Interferon Cytokine Res. Off. J. Int. Soc. Interferon Cytokine Res. 2017;37:52–61.

    Article  CAS  Google Scholar 

  92. Brieland JK, Jones ML, Clarke SJ, Baker JB, Warren JS, Fantone JC. Effect of acute inflammatory lung injury on the expression of monocyte chemoattractant protein-1 (MCP-1) in rat pulmonary alveolar macrophages. Am J Respir Cell Mol Biol. 1992;7:134–9.

    Article  CAS  PubMed  Google Scholar 

  93. Liu H, Fang S, Wang W, Cheng Y, Zhang Y, Liao H, et al. Macrophage-derived MCPIP1 mediates silica-induced pulmonary fibrosis via autophagy. Part Fibre Toxicol. 2016;13:55.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wan B, Wang Z-X, Lv Q-Y, Dong P-X, Zhao L-X, Yang Y, et al. Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages. Toxicol Lett. 2013;221:118–27.

    Article  CAS  PubMed  Google Scholar 

  95. Serra P, Bruczko M, Zapico JM, Puckowska A, Garcia MA, Martin-Santamaria S, et al. MMP-2 selectivity in hydroxamate-type inhibitors. Curr Med Chem. 2012;19:1036–64.

    Article  CAS  PubMed  Google Scholar 

  96. Supasorn O, Sringkarin N, Srimanote P, Angkasekwinai P. Matrix metalloproteinases contribute to the regulation of chemokine expression and pulmonary inflammation in Cryptococcus infection. Clin Exp Immunol. 2016;183:431–40.

    Article  CAS  PubMed  Google Scholar 

  97. Roulet A, Armand L, Dagouassat M, Rogerieux F, Simon-Deckers A, Belade E, et al. Intratracheally administered titanium dioxide or carbon black nanoparticles do not aggravate elastase-induced pulmonary emphysema in rats. BMC Pulm Med. 2012;12:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bachoual R, Boczkowski J, Goven D, Amara N, Tabet L, On D, et al. Biological effects of particles from the paris subway system. Chem Res Toxicol. 2007;20:1426–33.

    Article  CAS  PubMed  Google Scholar 

  99. Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LCJ, Martens JA, et al. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology. 2009;260:142–9.

    Article  CAS  PubMed  Google Scholar 

  100. Lavigne MC, Eppihimer MJ. Cigarette smoke condensate induces MMP-12 gene expression in airway-like epithelia. Biochem Biophys Res Commun. 2005;330:194–203.

    Article  CAS  PubMed  Google Scholar 

  101. Fujita K, Horie M, Kato H, Endoh S, Suzuki M, Nakamura A, et al. Effects of ultrafine TiO2 particles on gene expression profile in human keratinocytes without illumination: involvement of extracellular matrix and cell adhesion. Toxicol Lett. 2009;191:109–17.

    Article  CAS  PubMed  Google Scholar 

  102. Poirier M, Simard J-C, Girard D. Silver nanoparticles of 70 nm and 20 nm affect differently the biology of human neutrophils. J Immunotoxicol. 2016;13:375–85.

    Article  CAS  PubMed  Google Scholar 

  103. Poirier M, Simard J-C, Antoine F, Girard D. Interaction between silver nanoparticles of 20 nm (AgNP20 ) and human neutrophils: induction of apoptosis and inhibition of de novo protein synthesis by AgNP20 aggregates. J Appl Toxicol JAT. 2014;34:404–12.

    Article  CAS  PubMed  Google Scholar 

  104. Bashur CA, Venkataraman L, Ramamurthi A. Tissue engineering and regenerative strategies to replicate biocomplexity of vascular elastic matrix assembly. Tissue Eng Part B Rev. 2012;18:203–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Armand L, Dagouassat M, Belade E, Simon-Deckers A, Le Gouvello S, Tharabat C, et al. Titanium dioxide nanoparticles induce matrix metalloprotease 1 in human pulmonary fibroblasts partly via an interleukin-1β-dependent mechanism. Am J Respir Cell Mol Biol. 2013;48:354–63.

    Article  CAS  PubMed  Google Scholar 

  106. Raymond L, Eck S, Mollmark J, Hays E, Tomek I, Kantor S, et al. Interleukin-1 beta induction of matrix metalloproteinase-1 transcription in chondrocytes requires ERK-dependent activation of CCAAT enhancer-binding protein-beta. J Cell Physiol. 2006;207:683–8.

    Article  CAS  PubMed  Google Scholar 

  107. Zhang X, Feng M, Liu X, Bai L, Kong M, Chen Y, et al. Persistence of cirrhosis is maintained by intrahepatic regulatory T cells that inhibit fibrosis resolution by regulating the balance of tissue inhibitors of metalloproteinases and matrix metalloproteinases. Transl Res J Lab Clin Med. 2016;169:67–79. e1-2

    Article  CAS  Google Scholar 

  108. McHugh MD, Park J, Uhrich R, Gao W, Horwitz DA, Fahmy TM. Paracrine co-delivery of TGF-β and IL-2 using CD4-targeted nanoparticles for induction and maintenance of regulatory T cells. Biomaterials. 2015;59:172–81.

    Article  CAS  PubMed  Google Scholar 

  109. Kothapalli CR, Taylor PM, Smolenski RT, Yacoub MH, Ramamurthi A. Transforming growth factor beta 1 and hyaluronan oligomers synergistically enhance elastin matrix regeneration by vascular smooth muscle cells. Tissue Eng Part A. 2009;15:501–11.

    Article  CAS  PubMed  Google Scholar 

  110. Ma JY, Mercer RR, Barger M, Schwegler-Berry D, Scabilloni J, Ma JK, et al. Induction of pulmonary fibrosis by cerium oxide nanoparticles. Toxicol Appl Pharmacol. 2012;262:255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ma J, Mercer RR, Barger M, Schwegler-Berry D, Cohen JM, Demokritou P, et al. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses. Toxicol Appl Pharmacol. 2015;288:63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wight TN. Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol. 2002;14:617–23.

    Article  CAS  PubMed  Google Scholar 

  113. Brown-Augsburger P, Tisdale C, Broekelmann T, Sloan C, Mecham RP. Identification of an elastin cross-linking domain that joins three peptide chains. Possible role in nucleated assembly. J Biol Chem. 1995;270:17778–83.

    Article  CAS  PubMed  Google Scholar 

  114. Onoda M, Yoshimura K, Aoki H, Ikeda Y, Morikage N, Furutani A, et al. Lysyl oxidase resolves inflammation by reducing monocyte chemoattractant protein-1 in abdominal aortic aneurysm. Atherosclerosis. 2010;208:366–9.

    Article  CAS  PubMed  Google Scholar 

  115. Sylvester A, Sivaraman B, Deb P, Ramamurthi A. Nanoparticles for localized delivery of hyaluronan oligomers towards regenerative repair of elastic matrix. Acta Biomater. 2013;9:9292–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Joddar B, Ramamurthi A. Elastogenic effects of exogenous hyaluronan oligosaccharides on vascular smooth muscle cells. Biomaterials. 2006;27:5698–707.

    Article  CAS  PubMed  Google Scholar 

  117. Grossi C, Guccione C, Isacchi B, Bergonzi MC, Luccarini I, Casamenti F, Bilia AR. Development of Blood-Brain Barrier Permeable Nanoparticles as Potential Carriers for Salvianolic Acid B to CNS. Planta Med. 2017;83(5):382–391.

    CAS  PubMed  Google Scholar 

  118. Bryant DM, Mostov KE. From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol. 2008;9:887–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bryant DM, Roignot J, Datta A, Overeem AW, Kim M, Yu W, et al. A molecular switch for the orientation of epithelial cell polarization. Dev Cell. 2014;31:171–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Strilić B, Kucera T, Eglinger J, Hughes MR, McNagny KM, Tsukita S, et al. The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell. 2009;17:505–15.

    Article  PubMed  CAS  Google Scholar 

  121. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. 4th ed. New York: Garland Science; 2002.

    Google Scholar 

  122. Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3:422–33.

    Article  CAS  PubMed  Google Scholar 

  123. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86:279–367.

    Article  CAS  PubMed  Google Scholar 

  124. Li W, Szoka FC. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res. 2007;24:438–49.

    Article  PubMed  CAS  Google Scholar 

  125. Landgraf L, Müller I, Ernst P, Schäfer M, Rosman C, Schick I, et al. Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization. Beilstein J Nanotechnol. 2015;6:300–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Baldus S, Eiserich JP, Mani A, Castro L, Figueroa M, Chumley P, et al. Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration. J Clin Invest. 2001;108:1759–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nikitovic D, Holmgren A. S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J Biol Chem. 1996;271:19180–5.

    Article  CAS  PubMed  Google Scholar 

  128. Lim SY, Raftery MJ, Goyette J, Geczy CL. S-glutathionylation regulates inflammatory activities of S100A9. J Biol Chem. 2010;285:14377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Safar R, Ronzani C, Diab R, Chevrier J, Bensoussan D, Grandemange S, et al. Human monocyte response to S-nitrosoglutathione-loaded nanoparticles: uptake, viability, and transcriptome. Mol Pharm. 2015;12:554–61.

    Article  CAS  PubMed  Google Scholar 

  130. Treyer A, Müsch A. Hepatocyte polarity. Compr Physiol. 2013;3:243–87.

    PubMed  PubMed Central  Google Scholar 

  131. Prats-Mateu B, Ertl P, Toca-Herrera JL. Influence of HepG2 cell shape on nanoparticle uptake. Microsc Res Tech. 2014;77:560–5.

    Article  CAS  PubMed  Google Scholar 

  132. Jiménez Calvente C, Sehgal A, Popov Y, Kim YO, Zevallos V, Sahin U, et al. Specific hepatic delivery of procollagen α1(I) small interfering RNA in lipid-like nanoparticles resolves liver fibrosis. Hepatol Baltim Md. 2015;62:1285–97.

    Article  CAS  Google Scholar 

  133. Medina SH, Tekumalla V, Chevliakov MV, Shewach DS, Ensminger WD, El-Sayed MEH. N-acetylgalactosamine-functionalized dendrimers as hepatic cancer cell-targeted carriers. Biomaterials. 2011;32:4118–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 


Page 2

Classification of ECM molecules