When the systems of the body respond to a single bout of physical activity or exercise This is referred as?

1. Abid MR. Tsai JC. Spokes KC. Deshpande SS. Irani K. Aird WC. Vascular endothelial growth factor induces manganese-superoxide dismutase expression in endothelial cells by a Rac1-regulated NADPH oxidase-dependent mechanism. FASEB J. 2001;15:2548–2550. [PubMed] [Google Scholar]

2. Acemetacin (Emflex)—yet another NSAID. Drug Ther Bull. 1991;29:78. [PubMed] [Google Scholar]

3. Adams V. Spate U. Krankel N. Schulze PC. Linke A. Schuler G. Hambrecht R. Nuclear factor-kappa B activation in skeletal muscle of patients with chronic heart failure: correlation with the expression of inducible nitric oxide synthase. Eur J Cardiovasc Prev Rehabil. 2003;10:273–277. [PubMed] [Google Scholar]

4. Adhihetty PJ. Taivassalo T. Haller RG. Walkinshaw DR. Hood DA. The effect of training on the expression of mitochondrial biogenesis- and apoptosis-related proteins in skeletal muscle of patients with mtDNA defects. Am J Physiol Endocrinol Metab. 2007;293:E672–E680. [PubMed] [Google Scholar]

5. Adibhatla RM. Hatcher JF. Phospholipase A(2), reactive oxygen species, and lipid peroxidation in CNS pathologies. BMB Rep. 2008;41:560–567. [PMC free article] [PubMed] [Google Scholar]

6. Agarwal A. Gupta S. Sharma R. Oxidative stress and its implications in female infertility—a clinician's perspective. Reprod Biomed Online. 2005;11:641–650. [PubMed] [Google Scholar]

7. Aiguo W. Zhe Y. Gomez-Pinilla F. Vitamin E protects against oxidative damage and learning disability after mild traumatic brain injury in rats. Neurorehabil Neural Repair. 2010;24:290–298. [PMC free article] [PubMed] [Google Scholar]

8. Alamdari N. Aversa Z. Castillero E. Gurav A. Petkova V. Tizio S. Hasselgren PO. Resveratrol prevents dexamethasone-induced expression of the muscle atrophy-related ubiquitin ligases atrogin-1 and MuRF1 in cultured myotubes through a SIRT1-dependent mechanism. Biochem Biophys Res Commun. 2012;417:528–533. [PMC free article] [PubMed] [Google Scholar]

9. Alcendor RR. Gao S. Zhai P. Zablocki D. Holle E. Yu X. Tian B. Wagner T. Vatner SF. Sadoshima J. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007;100:1512–1521. [PubMed] [Google Scholar]

10. Alzawahra WF. Talukder MA. Liu X. Samouilov A. Zweier JL. Heme proteins mediate the conversion of nitrite to nitric oxide in the vascular wall. Am J Physiol Heart Circ Physiol. 2008;295:H499–H508. [PMC free article] [PubMed] [Google Scholar]

11. Ameln H. Gustafsson T. Sundberg CJ. Okamoto K. Jansson E. Poellinger L. Makino Y. Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J. 2005;19:1009–1011. [PubMed] [Google Scholar]

12. Anavi S. Harmelin NB. Madar Z. Tirosh O. Oxidative stress impairs HIF1alpha activation: a novel mechanism for increased vulnerability of steatotic hepatocytes to hypoxic stress. Free Radic Biol Med. 2012;52:1531–1542. [PubMed] [Google Scholar]

13. Anderson JE. A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell. 2000;11:1859–1874. [PMC free article] [PubMed] [Google Scholar]

14. Andersson DC. Betzenhauser MJ. Reiken S. Meli AC. Umanskaya A. Xie W. Shiomi T. Zalk R. Lacampagne A. Marks AR. Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab. 2011;14:196–207. [PMC free article] [PubMed] [Google Scholar]

15. Andrade FH. Reid MB. Allen DG. Westerblad H. Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibers from the mouse. J Physiol. 1998;509(Pt 2):565–575. [PMC free article] [PubMed] [Google Scholar]

16. Arany Z. Foo SY. Ma Y. Ruas JL. Bommi-Reddy A. Girnun G. Cooper M. Laznik D. Chinsomboon J. Rangwala SM. Baek KH. Rosenzweig A. Spiegelman BM. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature. 2008;451:1008–1012. [PubMed] [Google Scholar]

17. Arvidsson A. Collin T. Kirik D. Kokaia Z. Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8:963–970. [PubMed] [Google Scholar]

18. Atalay M. Oksala NK. Laaksonen DE. Khanna S. Nakao C. Lappalainen J. Roy S. Hanninen O. Sen CK. Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol. 2004;97:605–611. [PubMed] [Google Scholar]

19. Austin S. Klimcakova E. St-Pierre J. Impact of PGC-1alpha on the topology and rate of superoxide production by the mitochondrial electron transport chain. Free Radic Biol Med. 2011;51:2243–2248. [PubMed] [Google Scholar]

20. Baar K. Wende AR. Jones TE. Marison M. Nolte LA. Chen M. Kelly DP. Holloszy JO. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J. 2002;16:1879–1886. [PubMed] [Google Scholar]

21. Babior BM. NADPH oxidase. Curr Opin Immunol. 2004;16:42–47. [PubMed] [Google Scholar]

22. Bai P. Canto C. Brunyanszki A. Huber A. Szanto M. Cen Y. Yamamoto H. Houten SM. Kiss B. Oudart H. Gergely P. Menissier-de Murcia J. Schreiber V. Sauve AA. Auwerx J. PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab. 2011;13:450–460. [PMC free article] [PubMed] [Google Scholar]

23. Barres R. Yan J. Egan B. Treebak JT. Rasmussen M. Fritz T. Caidahl K. Krook A. O'Gorman DJ. Zierath JR. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15:405–411. [PubMed] [Google Scholar]

24. Barzilai A. Yamamoto K. DNA damage responses to oxidative stress. DNA Repair. 2004;3:1109–1115. [PubMed] [Google Scholar]

25. Beirowski B. Gustin J. Armour SM. Yamamoto H. Viader A. North BJ. Michan S. Baloh RH. Golden JP. Schmidt RE. Sinclair DA. Auwerx J. Milbrandt J. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc Natl Acad Sci U S A. 2011;108:E952–E961. [PMC free article] [PubMed] [Google Scholar]

26. Bejma J. Ji LL. Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol. 1999;87:465–470. [PubMed] [Google Scholar]

27. Bekinschtein P. Oomen CA. Saksida LM. Bussey TJ. Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? Semin Cell Dev Biol. 2011;22:536–542. [PubMed] [Google Scholar]

28. BelAiba RS. Djordjevic T. Bonello S. Flugel D. Hess J. Kietzmann T. Gorlach A. Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells. Biol Chem. 2004;385:249–257. [PubMed] [Google Scholar]

29. Bell EL. Guarente L. The SirT3 divining rod points to oxidative stress. Mol Cell. 2011;42:561–568. [PMC free article] [PubMed] [Google Scholar]

30. Bengtsson J. Gustafsson T. Widegren U. Jansson E. Sundberg CJ. Mitochondrial transcription factor A and respiratory complex IV increase in response to exercise training in humans. Pflugers Arch. 2001;443:61–66. [PubMed] [Google Scholar]

31. Berry A. Greco A. Giorgio M. Pelicci PG. de Kloet R. Alleva E. Minghetti L. Cirulli F. Deletion of the lifespan determinant p66(Shc) improves performance in a spatial memory task, decreases levels of oxidative stress markers in the hippocampus and increases levels of the neurotrophin BDNF in adult mice. Exp Gerontol. 2008;43:200–208. [PubMed] [Google Scholar]

32. Bhakat KK. Mokkapati SK. Boldogh I. Hazra TK. Mitra S. Acetylation of human 8-oxoguanine-DNA glycosylase by p300 and its role in 8-oxoguanine repair in vivo. Mol Cell Biol. 2006;26:1654–1665. [PMC free article] [PubMed] [Google Scholar]

33. Bhusari SS. Dobosy JR. Fu V. Almassi N. Oberley T. Jarrard DF. Superoxide dismutase 1 knockdown induces oxidative stress and DNA methylation loss in the prostate. Epigenetics. 2010;5:402–409. [PMC free article] [PubMed] [Google Scholar]

34. Bindoli A. Fukuto JM. Forman HJ. Thiol chemistry in peroxidase catalysis and redox signaling. Antioxid Redox Signal. 2008;10:1549–1564. [PMC free article] [PubMed] [Google Scholar]

35. Blair SN. Kampert JB. Kohl HW., 3rd Barlow CE. Macera CA. Paffenbarger RS., Jr. Gibbons LW. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA. 1996;276:205–210. [PubMed] [Google Scholar]

36. Bloomer RJ. Fry AC. Falvo MJ. Moore CA. Protein carbonyls are acutely elevated following single set anaerobic exercise in resistance trained men. J Sci Med Sport. 2007;10:411–417. [PubMed] [Google Scholar]

37. Boiteux S. Gellon L. Guibourt N. Repair of 8-oxoguanine in Saccharomyces cerevisiae: interplay of DNA repair and replication mechanisms. Free Radic Biol Med. 2002;32:1244–1253. [PubMed] [Google Scholar]

38. Boldogh I. Hajas G. Aguilera-Aguirre L. Hegde ML. Radak Z. Bacsi A. Sur S. Hazra TK. Mitra S. Activation of ras signaling pathway by 8-oxoguanine DNA glycosylase bound to its excision product, 8-oxoguanine. J Biol Chem. 2012;287:20769–20773. [PMC free article] [PubMed] [Google Scholar]

39. Bolli R. Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev. 1999;79:609–634. [PubMed] [Google Scholar]

40. Booth FW. Lees SJ. Fundamental questions about genes, inactivity, and chronic diseases. Physiol Genomics. 2007;28:146–157. [PubMed] [Google Scholar]

41. Bori Z. Zhao Z. Koltai E. Fatouros IG. Jamurtas AZ. Douroudos II. Terzis G. Chatzinikolaou A. Sovatzidis A. Draganidis D. Boldogh I. Radak Z. The effects of aging, physical training, and a single bout of exercise on mitochondrial protein expression in human skeletal muscle. Exp Gerontol. 2012;47:417–424. [PMC free article] [PubMed] [Google Scholar]

42. Bota DA. Davies KJ. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol. 2002;4:674–680. [PubMed] [Google Scholar]

43. Bota DA. Van Remmen H. Davies KJ. Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Lett. 2002;532:103–106. [PubMed] [Google Scholar]

44. Boveris A. Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973;134:707–716. [PMC free article] [PubMed] [Google Scholar]

45. Boveris A. Navarro A. Systemic and mitochondrial adaptive responses to moderate exercise in rodents. Free Radic Biol Med. 2008;44:224–229. [PubMed] [Google Scholar]

46. Bramble DM. Lieberman DE. Endurance running and the evolution of Homo. Nature. 2004;432:345–352. [PubMed] [Google Scholar]

47. Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010;45:466–472. [PMC free article] [PubMed] [Google Scholar]

48. Bravard A. Bonnard C. Durand A. Chauvin MA. Favier R. Vidal H. Rieusset J. Inhibition of xanthine oxidase reduces hyperglycemia-induced oxidative stress and improves mitochondrial alterations in skeletal muscle of diabetic mice. Am J Physiol Endocrinol Metab. 2011;300:E581–E591. [PubMed] [Google Scholar]

49. Bregegere F. Milner Y. Friguet B. The ubiquitin-proteasome system at the crossroads of stress-response and ageing pathways: a handle for skin care? Ageing Res Rev. 2006;5:60–90. [PubMed] [Google Scholar]

50. Brites F. Zago V. Verona J. Muzzio ML. Wikinski R. Schreier L. HDL capacity to inhibit LDL oxidation in well-trained triathletes. Life Sci. 2006;78:3074–3081. [PubMed] [Google Scholar]

51. Brixius K. Schoenberger S. Ladage D. Knigge H. Falkowski G. Hellmich M. Graf C. Latsch J. Montie GL. Prede GL. Bloch W. Long-term endurance exercise decreases antiangiogenic endostatin signalling in overweight men aged 50–60 years. Br J Sports Med. 2008;42:126–129. discussion 129. [PubMed] [Google Scholar]

52. Brooks GA. Are arterial, muscle and working limb lactate exchange data obtained on men at altitude consistent with the hypothesis of an intracellular lactate shuttle? Adv Exp Med Biol. 1999;474:185–204. [PubMed] [Google Scholar]

53. Brooks SV. Vasilaki A. Larkin LM. McArdle A. Jackson MJ. Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor kappaB activation. J Physiol. 2008;586:3979–3990. [PMC free article] [PubMed] [Google Scholar]

54. Buford TW. Cooke MB. Shelmadine BD. Hudson GM. Redd L. Willoughby DS. Effects of eccentric treadmill exercise on inflammatory gene expression in human skeletal muscle. Appl Physiol Nutr Metab. 2009;34:745–753. [PubMed] [Google Scholar]

55. Caldow MK. Steinberg GR. Cameron-Smith D. Impact of SOCS3 overexpression on human skeletal muscle development in vitro. Cytokine. 2011;55:104–109. [PubMed] [Google Scholar]

56. Carmel-Harel O. Storz G. Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol. 2000;54:439–461. [PubMed] [Google Scholar]

57. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–660. [PubMed] [Google Scholar]

58. Cartoni R. Leger B. Hock MB. Praz M. Crettenand A. Pich S. Ziltener JL. Luthi F. Deriaz O. Zorzano A. Gobelet C. Kralli A. Russell AP. Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol. 2005;567:349–358. [PMC free article] [PubMed] [Google Scholar]

59. Cassano M. Quattrocelli M. Crippa S. Perini I. Ronzoni F. Sampaolesi M. Cellular mechanisms and local progenitor activation to regulate skeletal muscle mass. J Muscle Res Cell Motil. 2009;30:243–253. [PubMed] [Google Scholar]

60. Chambers MA. Moylan JS. Smith JD. Goodyear LJ. Reid MB. Stretch-stimulated glucose uptake in skeletal muscle is mediated by reactive oxygen species and p38 MAP-kinase. J Physiol. 2009;587:3363–3373. [PMC free article] [PubMed] [Google Scholar]

61. Chandel NS. McClintock DS. Feliciano CE. Wood TM. Melendez JA. Rodriguez AM. Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275:25130–25138. [PubMed] [Google Scholar]

62. Chau MD. Gao J. Yang Q. Wu Z. Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc Natl Acad Sci U S A. 2010;107:12553–12558. [PMC free article] [PubMed] [Google Scholar]

63. Chen HW. Rainey RN. Balatoni CE. Dawson DW. Troke JJ. Wasiak S. Hong JS. McBride HM. Koehler CM. Teitell MA. French SW. Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol Cell Biol. 2006;26:8475–8487. [PMC free article] [PubMed] [Google Scholar]

64. Chen Q. Lesnefsky EJ. Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radic Biol Med. 2006;40:976–982. [PubMed] [Google Scholar]

65. Chen Q. Moghaddas S. Hoppel CL. Lesnefsky EJ. Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. Am J Physiol Cell Physiol. 2008;294:C460–C466. [PubMed] [Google Scholar]

66. Chen R. Dioum EM. Hogg RT. Gerard RD. Garcia JA. Hypoxia increases sirtuin 1 expression in a hypoxia-inducible factor-dependent manner. J Biol Chem. 2011;286:13869–13878. [PMC free article] [PubMed] [Google Scholar]

67. Chen SD. Yang DI. Lin TK. Shaw FZ. Liou CW. Chuang YC. Roles of Oxidative Stress, Apoptosis, PGC-1alpha and Mitochondrial Biogenesis in Cerebral Ischemia. Int J Mol Sci. 2011;12:7199–7215. [PMC free article] [PubMed] [Google Scholar]

68. Chigurupati S. Son TG. Hyun DH. Lathia JD. Mughal MR. Savell J. Li SC. Nagaraju GP. Chan SL. Arumugam TV. Mattson MP. Lifelong running reduces oxidative stress and degenerative changes in the testes of mice. J Endocrinol. 2008;199:333–341. [PMC free article] [PubMed] [Google Scholar]

69. Clayton AL. Hazzalin CA. Mahadevan LC. Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell. 2006;23:289–296. [PubMed] [Google Scholar]

70. Cobley JN. McGlory C. Morton JP. Close GL. N-Acetylcysteine's attenuation of fatigue after repeated bouts of intermittent exercise: practical implications for tournament situations. Int J Sport Nutr Exerc Metab. 2011;21:451–461. [PubMed] [Google Scholar]

71. Collins A. Hill LE. Chandramohan Y. Whitcomb D. Droste SK. Reul JM. Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus. PLoS One. 2009;4:e4330. [PMC free article] [PubMed] [Google Scholar]

72. Constantin-Teodosiu D. Constantin D. Stephens F. Laithwaite D. Greenhaff PL. The role of FOXO and PPAR transcription factors in diet-mediated inhibition of PDC activation and carbohydrate oxidation during exercise in humans and the role of pharmacological activation of PDC in overriding these changes. Diabetes. 2012;61:1017–1024. [PMC free article] [PubMed] [Google Scholar]

73. Conti V. Corbi G. Russomanno G. Simeon V. Ferrara N. Filippelli W. Limongelli F. Canonico R. Grasso C. Stiuso P. Dicitore A. Filippelli A. Oxidative Stress effects on endothelial cells treated with different athletes' sera. Med Sci Sports Exerc. 2012;44:39–49. [PubMed] [Google Scholar]

74. Corn SD. Barstow TJ. Effects of oral N-acetylcysteine on fatigue, critical power, and W’ in exercising humans. Respir Physiol Neurobiol. 2011;178:261–268. [PubMed] [Google Scholar]

75. Csiszar A. Podlutsky A. Podlutskaya N. Sonntag WE. Merlin SZ. Philipp EE. Doyle K. Davila A. Recchia FA. Ballabh P. Pinto JT. Ungvari Z. Testing the oxidative stress hypothesis of aging in primate fibroblasts: is there a correlation between species longevity and cellular ROS production? J Gerontol A Biol Sci Med Sci. 2012;67:841–852. [PMC free article] [PubMed] [Google Scholar]

76. Cuevas MJ. Almar M. Garcia-Glez JC. Garcia-Lopez D. De Paz JA. Alvear-Ordenes I. Gonzalez-Gallego J. Changes in oxidative stress markers and NF-kappaB activation induced by sprint exercise. Free Radic Res. 2005;39:431–439. [PubMed] [Google Scholar]

77. Davies KJ. Quintanilha AT. Brooks GA. Packer L. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun. 1982;107:1198–1205. [PubMed] [Google Scholar]

78. Demer L. Tintut Y. The roles of lipid oxidation products and receptor activator of nuclear factor-kappaB signaling in atherosclerotic calcification. Circ Res. 2011;108:1482–1493. [PMC free article] [PubMed] [Google Scholar]

79. Demirel HA. Hamilton KL. Shanely RA. Tumer N. Koroly MJ. Powers SK. Age and attenuation of exercise-induced myocardial HSP72 accumulation. Am J Physiol Heart Circ Physiol. 2003;285:H1609–H1615. [PubMed] [Google Scholar]

80. Derbre F. Gomez-Cabrera MC. Nascimento AL. Sanchis-Gomar F. Martinez-Bello VE. Tresguerres JA. Fuentes T. Gratas-Delamarche A. Monsalve M. Vina J. Age associated low mitochondrial biogenesis may be explained by lack of response of PGC-1alpha to exercise training. Age. 2012;34:669–679. [PMC free article] [PubMed] [Google Scholar]

81. Ding YH. Young CN. Luan X. Li J. Rafols JA. Clark JC. McAllister JP., 2nd Ding Y. Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion. Acta Neuropathol. 2005;109:237–246. [PubMed] [Google Scholar]

82. Dioum EM. Chen R. Alexander MS. Zhang Q. Hogg RT. Gerard RD. Garcia JA. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science. 2009;324:1289–1293. [PubMed] [Google Scholar]

83. Dosek A. Ohno H. Acs Z. Taylor AW. Radak Z. High altitude and oxidative stress. Respir Physiol Neurobiol. 2007;158:128–131. [PubMed] [Google Scholar]

84. Droge W. Oxidative stress and ageing: is ageing a cysteine deficiency syndrome? Philos Trans R Soc Lond B Biol Sci. 2005;360:2355–2372. [PMC free article] [PubMed] [Google Scholar]

85. Drummond MJ. Fry CS. Glynn EL. Timmerman KL. Dickinson JM. Walker DK. Gundermann DM. Volpi E. Rasmussen BB. Skeletal muscle amino acid transporter expression is increased in young and older adults following resistance exercise. J Appl Physiol. 2011;111:135–142. [PMC free article] [PubMed] [Google Scholar]

86. Du J. Zhou Y. Su X. Yu JJ. Khan S. Jiang H. Kim J. Woo J. Kim JH. Choi BH. He B. Chen W. Zhang S. Cerione RA. Auwerx J. Hao Q. Lin H. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011;334:806–809. [PMC free article] [PubMed] [Google Scholar]

87. Durham WJ. Li YP. Gerken E. Farid M. Arbogast S. Wolfe RR. Reid MB. Fatiguing exercise reduces DNA binding activity of NF-kappaB in skeletal muscle nuclei. J Appl Physiol. 2004;97:1740–1745. [PubMed] [Google Scholar]

88. Erdelyi K. Bai P. Kovacs I. Szabo E. Mocsar G. Kakuk A. Szabo C. Gergely P. Virag L. Dual role of poly(ADP-ribose) glycohydrolase in the regulation of cell death in oxidatively stressed A549 cells. FASEB J. 2009;23:3553–3563. [PMC free article] [PubMed] [Google Scholar]

89. Eriksson PS. Perfilieva E. Bjork-Eriksson T. Alborn AM. Nordborg C. Peterson DA. Gage FH. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–1317. [PubMed] [Google Scholar]

90. Falkowski PG. Evolution. Tracing oxygen's imprint on earth's metabolic evolution. Science. 2006;311:1724–1725. [PubMed] [Google Scholar]

91. Ferrara N. Rinaldi B. Corbi G. Conti V. Stiuso P. Boccuti S. Rengo G. Rossi F. Filippelli A. Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res. 2008;11:139–150. [PubMed] [Google Scholar]

92. Finnin MS. Donigian JR. Pavletich NP. Structure of the histone deacetylase SIRT2. Nat Struct Biol. 2001;8:621–625. [PubMed] [Google Scholar]

93. Firuzi O. Miri R. Tavakkoli M. Saso L. Antioxidant therapy: current status and future prospects. Curr Med Chem. 2011;18:3871–3888. [PubMed] [Google Scholar]

94. Fischer CP. Hiscock NJ. Penkowa M. Basu S. Vessby B. Kallner A. Sjoberg LB. Pedersen BK. Supplementation with vitamins C and E inhibits the release of interleukin-6 from contracting human skeletal muscle. J Physiol. 2004;558:633–645. [PMC free article] [PubMed] [Google Scholar]

95. Foulstone EJ. Meadows KA. Holly JM. Stewart CE. Insulin-like growth factors (IGF-I and IGF-II) inhibit C2 skeletal myoblast differentiation and enhance TNF alpha-induced apoptosis. J Cell Physiol. 2001;189:207–215. [PubMed] [Google Scholar]

96. Freyssenet D. Energy sensing and regulation of gene expression in skeletal muscle. J Appl Physiol. 2007;102:529–540. [PubMed] [Google Scholar]

97. Friedmann B. Kinscherf R. Borisch S. Richter G. Bartsch P. Billeter R. Effects of low-resistance/high-repetition strength training in hypoxia on muscle structure and gene expression. Pflugers Arch. 2003;446:742–751. [PubMed] [Google Scholar]

98. Frojdo S. Durand C. Molin L. Carey AL. El-Osta A. Kingwell BA. Febbraio MA. Solari F. Vidal H. Pirola L. Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol Cell Endocrinol. 2011;335:166–176. [PubMed] [Google Scholar]

99. Fulco M. Schiltz RL. Iezzi S. King MT. Zhao P. Kashiwaya Y. Hoffman E. Veech RL. Sartorelli V. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell. 2003;12:51–62. [PubMed] [Google Scholar]

100. Fulle S. Di Donna S. Puglielli C. Pietrangelo T. Beccafico S. Bellomo R. Protasi F. Fano G. Age-dependent imbalance of the antioxidative system in human satellite cells. Exp Gerontol. 2005;40:189–197. [PubMed] [Google Scholar]

101. Garcia-Lopez D. Cuevas MJ. Almar M. Lima E. De Paz JA. Gonzalez-Gallego J. Effects of eccentric exercise on NF-kappaB activation in blood mononuclear cells. Med Sci Sports Exerc. 2007;39:653–664. [PubMed] [Google Scholar]

102. Garnier A. Fortin D. Zoll J. N'Guessan B. Mettauer B. Lampert E. Veksler V. Ventura-Clapier R. Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J. 2005;19:43–52. [PubMed] [Google Scholar]

103. Gaudel C. Schwartz C. Giordano C. Abumrad NA. Grimaldi PA. Pharmacological activation of PPARbeta promotes rapid and calcineurin-dependent fiber remodeling and angiogenesis in mouse skeletal muscle. Am J Physiol Endocrinol Metab. 2008;295:E297–E304. [PMC free article] [PubMed] [Google Scholar]

104. Gavin TP. Basal and exercise-induced regulation of skeletal muscle capillarization. Exerc Sport Sci Rev. 2009;37:86–92. [PMC free article] [PubMed] [Google Scholar]

105. George L. Lokhandwala MF. Asghar M. Exercise activates redox-sensitive transcription factors and restores renal D1 receptor function in old rats. Am J Physiol Renal Physiol. 2009;297:F1174–F1180. [PMC free article] [PubMed] [Google Scholar]

106. Ghosh S. Lertwattanarak R. Lefort N. Molina-Carrion M. Joya-Galeana J. Bowen BP. Garduno-Garcia Jde J. Abdul-Ghani M. Richardson A. DeFronzo RA. Mandarino L. Van Remmen H. Musi N. Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance. Diabetes. 2011;60:2051–2060. [PMC free article] [PubMed] [Google Scholar]

107. Gielen S. Sandri M. Kozarez I. Kratzsch J. Teupser D. Thiery J. Erbs S. Mangner N. Lenk K. Hambrecht R. Schuler G. Adams V. Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age: the randomized leipzig exercise intervention in chronic heart failure and aging catabolism study. Circulation. 2012;125:2716–2727. [PubMed] [Google Scholar]

108. Golbidi S. Laher I. Antioxidant therapy in human endocrine disorders. Med Sci Monit. 2010;16:RA9–RA24. [PubMed] [Google Scholar]

109. Goldfarb AH. Bloomer RJ. McKenzie MJ. Combined antioxidant treatment effects on blood oxidative stress after eccentric exercise. Med Sci Sports Exerc. 2005;37:234–239. [PubMed] [Google Scholar]

110. Gomez-Cabrera MC. Borras C. Pallardo FV. Sastre J. Ji LL. Vina J. Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol. 2005;567:113–120. [PMC free article] [PubMed] [Google Scholar]

111. Gomez-Cabrera MC. Domenech E. Vina J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44:126–131. [PubMed] [Google Scholar]

112. Gomez-Cabrera MC. Vina J. Ji LL. Interplay of oxidants and antioxidants during exercise: implications for muscle health. Physician Sportsmed. 2009;37:116–123. [PubMed] [Google Scholar]

113. Gomez-Pinilla F. Zhuang Y. Feng J. Ying Z. Fan G. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci. 2011;33:383–390. [PMC free article] [PubMed] [Google Scholar]

114. Goto S. Nakamura A. Radak Z. Nakamoto H. Takahashi R. Yasuda K. Sakurai Y. Ishii N. Carbonylated proteins in aging and exercise: immunoblot approaches. Mech Ageing Dev. 1999;107:245–253. [PubMed] [Google Scholar]

115. Goto S. Takahashi R. Kumiyama AA. Radak Z. Hayashi T. Takenouchi M. Abe R. Implications of protein degradation in aging. Ann N Y Acad Sci. 2001;928:54–64. [PubMed] [Google Scholar]

116. Goto S. Takahashi R. Radak Z. Sharma R. Beneficial biochemical outcomes of late-onset dietary restriction in rodents. Ann N Y Acad Sci. 2007;1100:431–441. [PubMed] [Google Scholar]

117. Gregg SQ. Gutierrez V. Robinson AR. Woodell T. Nakao A. Ross MA. Michalopoulos GK. Rigatti L. Rothermel CE. Kamileri I. Garinis GA. Stolz DB. Niedernhofer LJ. A mouse model of accelerated liver aging caused by a defect in DNA repair. Hepatology. 2012;55:609–621. [PMC free article] [PubMed] [Google Scholar]

118. Grune T. Jung T. Merker K. Davies KJ. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes' during oxidative stress, aging, and disease. Int J Biochem Cell Biol. 2004;36:2519–2530. [PubMed] [Google Scholar]

119. Guarente L. Sirtuins, aging, and metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:81–90. [PubMed] [Google Scholar]

120. Guerra B. Olmedillas H. Guadalupe-Grau A. Ponce-Gonzalez JG. Morales-Alamo D. Fuentes T. Chapinal E. Fernandez-Perez L. De Pablos-Velasco P. Santana A. Calbet JA. Is sprint exercise a leptin signaling mimetic in human skeletal muscle? J Appl Physiol. 2011;111:715–725. [PubMed] [Google Scholar]

121. Gulati M. Pandey DK. Arnsdorf MF. Lauderdale DS. Thisted RA. Wicklund RH. Al-Hani AJ. Black HR. Exercise capacity and the risk of death in women: the St James women take heart project. Circulation. 2003;108:1554–1559. [PubMed] [Google Scholar]

122. Gurd BJ. Holloway GP. Yoshida Y. Bonen A. In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner. Metabolism. 2012;61:733–741. [PubMed] [Google Scholar]

123. Gurd BJ. Yoshida Y. McFarlan JT. Holloway GP. Moyes CD. Heigenhauser GJ. Spriet L. Bonen A. Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2011;301:R67–R75. [PubMed] [Google Scholar]

124. Gustafsson T. Knutsson A. Puntschart A. Kaijser L. Nordqvist AC. Sundberg CJ. Jansson E. Increased expression of vascular endothelial growth factor in human skeletal muscle in response to short-term one-legged exercise training. Pflugers Arch. 2002;444:752–759. [PubMed] [Google Scholar]

125. Gustafsson T. Puntschart A. Kaijser L. Jansson E. Sundberg CJ. Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am J Physiol. 1999;276:H679–H685. [PubMed] [Google Scholar]

126. Guttridge DC. Mayo MW. Madrid LV. Wang CY. Baldwin AS., Jr NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science. 2000;289:2363–2366. [PubMed] [Google Scholar]

127. Haddad F. Adams GR. Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. J Appl Physiol. 2006;100:1188–1203. [PubMed] [Google Scholar]

128. Halestrap AP. Clarke SJ. Khaliulin I. The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta. 2007;1767:1007–1031. [PMC free article] [PubMed] [Google Scholar]

129. Handschin C. Chin S. Li P. Liu F. Maratos-Flier E. Lebrasseur NK. Yan Z. Spiegelman BM. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem. 2007;282:30014–30021. [PubMed] [Google Scholar]

130. Handschin C. Spiegelman BM. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature. 2008;454:463–469. [PMC free article] [PubMed] [Google Scholar]

131. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300. [PubMed] [Google Scholar]

132. Hashimshony T. Zhang J. Keshet I. Bustin M. Cedar H. The role of DNA methylation in setting up chromatin structure during development. Nat Genet. 2003;34:187–192. [PubMed] [Google Scholar]

133. Hayakawa H. Sekiguchi M. Human polynucleotide phosphorylase protein in response to oxidative stress. Biochemistry. 2006;45:6749–6755. [PubMed] [Google Scholar]

134. Hegedus C. Lakatos P. Olah G. Toth BI. Gergely S. Szabo E. Biro T. Szabo C. Virag L. Protein kinase C protects from DNA damage-induced necrotic cell death by inhibiting poly(ADP-ribose) polymerase-1. FEBS Lett. 2008;582:1672–1678. [PMC free article] [PubMed] [Google Scholar]

135. Heon S. Bernier M. Servant N. Dostanic S. Wang C. Kirby GM. Alpert L. Chalifour LE. Dexrazoxane does not protect against doxorubicin-induced damage in young rats. Am J Physiol Heart Circ Physiol. 2003;285:H499–H506. [PubMed] [Google Scholar]

136. Hirasaka K. Lago CU. Kenaston MA. Fathe K. Nowinski SM. Nikawa T. Mills EM. Identification of a redox-modulatory interaction between uncoupling protein 3 and thioredoxin 2 in the mitochondrial intermembrane space. Antioxid Redox Signal. 2011;15:2645–2661. [PMC free article] [PubMed] [Google Scholar]

137. Hirschey MD. Shimazu T. Goetzman E. Jing E. Schwer B. Lombard DB. Grueter CA. Harris C. Biddinger S. Ilkayeva OR. Stevens RD. Li Y. Saha AK. Ruderman NB. Bain JR. Newgard CB. Farese RV., Jr. Alt FW. Kahn CR. Verdin E. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 2010;464:121–125. [PMC free article] [PubMed] [Google Scholar]

138. Hitomi Y. Watanabe S. Kizaki T. Sakurai T. Takemasa T. Haga S. Ookawara T. Suzuki K. Ohno H. Acute exercise increases expression of extracellular superoxide dismutase in skeletal muscle and the aorta. Redox Rep. 2008;13:213–216. [PubMed] [Google Scholar]

139. Ho RC. Hirshman MF. Li Y. Cai D. Farmer JR. Aschenbach WG. Witczak CA. Shoelson SE. Goodyear LJ. Regulation of IkappaB kinase and NF-kappaB in contracting adult rat skeletal muscle. Am J Physiol Cell Physiol. 2005;289:C794–C801. [PubMed] [Google Scholar]

140. Hoier B. Olsen K. Nyberg M. Bangsbo J. Hellsten Y. Contraction-induced secretion of VEGF from skeletal muscle cells is mediated by adenosine. Am J Physiol Heart Circ Physiol. 2010;299:H857–H862. [PubMed] [Google Scholar]

141. Hokari F. Kawasaki E. Sakai A. Koshinaka K. Sakuma K. Kawanaka K. Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles. J Appl Physiol. 2010;109:332–340. [PubMed] [Google Scholar]

142. Hollander J. Fiebig R. Gore M. Ookawara T. Ohno H. Ji LL. Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle. Pflugers Arch. 2001;442:426–434. [PubMed] [Google Scholar]

143. Holloszy JO. Regulation by exercise of skeletal muscle content of mitochondria and GLUT4. J Physiol Pharmacol. 2008;59(Suppl 7):5–18. [PubMed] [Google Scholar]

144. Holscher M. Schafer K. Krull S. Farhat K. Hesse A. Silter M. Lin Y. Pichler BJ. Thistlethwaite P. El-Armouche A. Maier LS. Katschinski DM. Zieseniss A. Unfavourable consequences of chronic cardiac HIF-1alpha stabilization. Cardiovasc Res. 2012;94:77–86. [PubMed] [Google Scholar]

145. Hoppeler H. Vogt M. Weibel ER. Fluck M. Response of skeletal muscle mitochondria to hypoxia. Exp Physiol. 2003;88:109–119. [PubMed] [Google Scholar]

146. Hori O. Ichinoda F. Tamatani T. Yamaguchi A. Sato N. Ozawa K. Kitao Y. Miyazaki M. Harding HP. Ron D. Tohyama M. D MS. Ogawa S. Transmission of cell stress from endoplasmic reticulum to mitochondria: enhanced expression of Lon protease. J Cell Biol. 2002;157:1151–1160. [PMC free article] [PubMed] [Google Scholar]

147. Hsu CY. An G. Liu JS. Xue JJ. He YY. Lin TN. Expression of immediate early gene and growth factor mRNAs in a focal cerebral ischemia model in the rat. Stroke. 1993;24:I78–I81. [PubMed] [Google Scholar]

148. Hu J. Imam SZ. Hashiguchi K. de Souza-Pinto NC. Bohr VA. Phosphorylation of human oxoguanine DNA glycosylase (alpha-OGG1) modulates its function. Nucleic Acids Res. 2005;33:3271–3282. [PMC free article] [PubMed] [Google Scholar]

149. Hunter RB. Kandarian SC. Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J Clin Invest. 2004;114:1504–1511. [PMC free article] [PubMed] [Google Scholar]

150. Hunter RB. Stevenson E. Koncarevic A. Mitchell-Felton H. Essig DA. Kandarian SC. Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. FASEB J. 2002;16:529–538. [PubMed] [Google Scholar]

151. Ido Y. Kilo C. Williamson JR. Cytosolic NADH/NAD+, free radicals, and vascular dysfunction in early diabetes mellitus. Diabetologia. 1997;40(Suppl 2):S115–S117. [PubMed] [Google Scholar]

152. Isaeva EV. Shkryl VM. Shirokova N. Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle. J Physiol. 2005;565:855–872. [PMC free article] [PubMed] [Google Scholar]

153. Iyer R. Lehnert BE. Svensson R. Factors underlying the cell growth-related bystander responses to alpha particles. Cancer Res. 2000;60:1290–1298. [PubMed] [Google Scholar]

154. Jaakkola P. Mole DR. Tian YM. Wilson MI. Gielbert J. Gaskell SJ. Kriegsheim A. Hebestreit HF. Mukherji M. Schofield CJ. Maxwell PH. Pugh CW. Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–472. [PubMed] [Google Scholar]

155. Jackson MJ. Control of reactive oxygen species production in contracting skeletal muscle. Antioxid Redox Signal. 2011;15:2477–2486. [PMC free article] [PubMed] [Google Scholar]

156. Jaiswal M. LaRusso NF. Nishioka N. Nakabeppu Y. Gores GJ. Human Ogg1, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide. Cancer Res. 2001;61:6388–6393. [PubMed] [Google Scholar]

157. Jeong W. Jung Y. Kim H. Park SJ. Rhee SG. Thioredoxin-related protein 14, a new member of the thioredoxin family with disulfide reductase activity: implication in the redox regulation of TNF-alpha signaling. Free Radic Biol Med. 2009;47:1294–1303. [PubMed] [Google Scholar]

158. Ji LL. Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med. 1999;222:283–292. [PubMed] [Google Scholar]

159. Ji LL. Exercise at old age: does it increase or alleviate oxidative stress? Ann N Y Acad Sci. 2001;928:236–247. [PubMed] [Google Scholar]

160. Ji LL. Modulation of skeletal muscle antioxidant defense by exercise: role of redox signaling. Free Radic Biol Med. 2008;44:142–152. [PubMed] [Google Scholar]

161. Ji LL. Gomez-Cabrera MC. Steinhafel N. Vina J. Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle. FASEB J. 2004;18:1499–1506. [PubMed] [Google Scholar]

162. Ji LL. Gomez-Cabrera MC. Vina J. Exercise and hormesis: activation of cellular antioxidant signaling pathway. Ann N Y Acad Sci. 2006;1067:425–435. [PubMed] [Google Scholar]

163. Ji LL. Gomez-Cabrera MC. Vina J. Role of nuclear factor kappaB and mitogen-activated protein kinase signaling in exercise-induced antioxidant enzyme adaptation. Appl Physiol Nutr Metab. 2007;32:930–935. [PubMed] [Google Scholar]

164. Jiang M. Wang J. Fu J. Du L. Jeong H. West T. Xiang L. Peng Q. Hou Z. Cai H. Seredenina T. Arbez N. Zhu S. Sommers K. Qian J. Zhang J. Mori S. Yang XW. Tamashiro KL. Aja S. Moran TH. Luthi-Carter R. Martin B. Maudsley S. Mattson MP. Cichewicz RH. Ross CA. Holtzman DM. Krainc D. Duan W. Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nat Med. 2012;18:153–158. [PMC free article] [PubMed] [Google Scholar]

165. Jimenez-Jimenez R. Cuevas MJ. Almar M. Lima E. Garcia-Lopez D. De Paz JA. Gonzalez-Gallego J. Eccentric training impairs NF-kappaB activation and over-expression of inflammation-related genes induced by acute eccentric exercise in the elderly. Mech Ageing Dev. 2008;129:313–321. [PubMed] [Google Scholar]

166. Jones DP. Redefining oxidative stress. Antioxid Redox Signal. 2006;8:1865–1879. [PubMed] [Google Scholar]

167. Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol. 2008;295:C849–C868. [PMC free article] [PubMed] [Google Scholar]

168. Jozsi AC. Dupont-Versteegden EE. Taylor-Jones JM. Evans WJ. Trappe TA. Campbell WW. Peterson CA. Aged human muscle demonstrates an altered gene expression profile consistent with an impaired response to exercise. Mech Ageing Dev. 2000;120:45–56. [PubMed] [Google Scholar]

169. Judge S. Jang YM. Smith A. Selman C. Phillips T. Speakman JR. Hagen T. Leeuwenburgh C. Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart. Am J Physiol Regul Integr Comp Physiol. 2005;289:R1564–R1572. [PubMed] [Google Scholar]

170. Jung T. Catalgol B. Grune T. The proteasomal system. Mol Aspects Med. 2009;30:191–296. [PubMed] [Google Scholar]

171. Kaidi A. Weinert BT. Choudhary C. Jackson SP. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science. 2010;329:1348–1353. [PMC free article] [PubMed] [Google Scholar] Retracted

172. Kang C. O'Moore KM. Dickman JR. Ji LL. Exercise activation of muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling is redox sensitive. Free Radic Biol Med. 2009;47:1394–1400. [PubMed] [Google Scholar]

173. Katavetin P. Miyata T. Inagi R. Tanaka T. Sassa R. Ingelfinger JR. Fujita T. Nangaku M. High glucose blunts vascular endothelial growth factor response to hypoxia via the oxidative stress-regulated hypoxia-inducible factor/hypoxia-responsible element pathway. J Am Soc Nephrol. 2006;17:1405–1413. [PubMed] [Google Scholar]

174. Katzmarzyk PT. Janssen I. The economic costs associated with physical inactivity and obesity in Canada: an update. Can J Appl Physiol. 2004;29:90–115. [PubMed] [Google Scholar]

175. Kawahara TL. Michishita E. Adler AS. Damian M. Berber E. Lin M. McCord RA. Ongaigui KC. Boxer LD. Chang HY. Chua KF. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell. 2009;136:62–74. [PMC free article] [PubMed] [Google Scholar]

176. Kelm M. Schrader J. Control of coronary vascular tone by nitric oxide. Circ Res. 1990;66:1561–1575. [PubMed] [Google Scholar]

177. Kemp M. Go YM. Jones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med. 2008;44:921–937. [PMC free article] [PubMed] [Google Scholar]

178. Kerkweg U. Schmitz D. de Groot H. Screening for the formation of reactive oxygen species and of NO in muscle tissue and remote organs upon mechanical trauma to the mouse hind limb. Eur Surg Res. 2006;38:83–89. [PubMed] [Google Scholar]

179. Kietzmann T. Fandrey J. Acker H. Oxygen radicals as messengers in oxygen-dependent gene expression. News Physiol Sci. 2000;15:202–208. [PubMed] [Google Scholar]

180. Kim H. Lee SH. Kim SS. Yoo JH. Kim CJ. The influence of maternal treadmill running during pregnancy on short-term memory and hippocampal cell survival in rat pups. Int J Dev Neurosci. 2007;25:243–249. [PubMed] [Google Scholar]

181. Kim HY. Gladyshev VN. Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem J. 2007;407:321–329. [PubMed] [Google Scholar]

182. Kim SY. Jun TW. Lee YS. Na HK. Surh YJ. Song W. Effects of exercise on cyclooxygenase-2 expression and nuclear factor-kappaB DNA binding in human peripheral blood mononuclear cells. Ann N Y Acad Sci. 2009;1171:464–471. [PubMed] [Google Scholar]

183. Kingwell BA. Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease. FASEB J. 2000;14:1685–1696. [PubMed] [Google Scholar]

184. Kinnunen S. Oksala N. Hyyppa S. Sen CK. Radak Z. Laaksonen DE. Szabo B. Jakus J. Atalay M. alpha-Lipoic acid modulates thiol antioxidant defenses and attenuates exercise-induced oxidative stress in standardbred trotters. Free Radic Res. 2009;43:697–705. [PubMed] [Google Scholar]

185. Kinsey GR. Blum JL. Covington MD. Cummings BS. McHowat J. Schnellmann RG. Decreased iPLA2gamma expression induces lipid peroxidation and cell death and sensitizes cells to oxidant-induced apoptosis. J Lipid Res. 2008;49:1477–1487. [PMC free article] [PubMed] [Google Scholar]

186. Koch LG. Kemi OJ. Qi N. Leng SX. Bijma P. Gilligan LJ. Wilkinson JE. Wisloff H. Hoydal MA. Rolim N. Abadir PM. van Grevenhof EM. Smith GL. Burant CF. Ellingsen O. Britton SL. Wisloff U. Intrinsic aerobic capacity sets a divide for aging and longevity. Circ Res. 2011;109:1162–1172. [PMC free article] [PubMed] [Google Scholar]

187. Koltai E. Hart N. Taylor AW. Goto S. Ngo JK. Davies KJ. Radak Z. Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training. Am J Physiol Regul Integr Comp Physiol. 2012;303:R127–R134. [PMC free article] [PubMed] [Google Scholar]

188. Koltai E. Szabo Z. Atalay M. Boldogh I. Naito H. Goto S. Nyakas C. Radak Z. Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech Ageing Dev. 2010;131:21–28. [PMC free article] [PubMed] [Google Scholar]

189. Koltai E. Zhao Z. Lacza Z. Cselenyak A. Vacz G. Nyakas C. Boldogh I. Ichinoseki-Sekine N. Radak Z. Combined exercise and insulin-like growth factor-1 supplementation induces neurogenesis in old rats, but do not attenuate age-associated DNA damage. Rejuvenation Res. 2011;14:585–596. [PMC free article] [PubMed] [Google Scholar]

190. Koyama T. Kume S. Koya D. Araki S. Isshiki K. Chin-Kanasaki M. Sugimoto T. Haneda M. Sugaya T. Kashiwagi A. Maegawa H. Uzu T. SIRT3 attenuates palmitate-induced ROS production and inflammation in proximal tubular cells. Free Radic Biol Med. 2011;51:1258–1267. [PubMed] [Google Scholar]

191. Kuhn H. Pliquett F. Wunderlich S. Schewe T. Krause W. Reticulocyte lipoxygenase changes the passive electrical properties of bovine heart submitochondrial particles. Biochim Biophys Acta. 1983;735:283–290. [PubMed] [Google Scholar]

192. Lappalainen Z. Lappalainen J. Laaksonen DE. Oksala KJ. Khanna S. Sen CK. Atalay M. Acute exercise and thioredoxin-1 in rat brain, and alpha-lipoic acid and thioredoxin-interacting protein response, in diabetes. Int J Sport Nutr Exerc Metab. 2010;20:206–215. [PubMed] [Google Scholar]

193. Lappalainen Z. Lappalainen J. Oksala NK. Laaksonen DE. Khanna S. Sen CK. Atalay M. Diabetes impairs exercise training-associated thioredoxin response and glutathione status in rat brain. J Appl Physiol. 2009;106:461–467. [PubMed] [Google Scholar]

194. Le Moine CM. Morash AJ. McClelland GB. Changes in HIF-1alpha protein, pyruvate dehydrogenase phosphorylation, and activity with exercise in acute and chronic hypoxia. Am J Physiol Regul Integr Comp Physiol. 2011;301:R1098–R1104. [PubMed] [Google Scholar]

195. Lee B. Cao R. Choi YS. Cho HY. Rhee AD. Hah CK. Hoyt KR. Obrietan K. The CREB/CRE transcriptional pathway: protection against oxidative stress-mediated neuronal cell death. J Neurochem. 2009;108:1251–1265. [PMC free article] [PubMed] [Google Scholar]

196. Lee CK. Klopp RG. Weindruch R. Prolla TA. Gene expression profile of aging and its retardation by caloric restriction. Science. 1999;285:1390–1393. [PubMed] [Google Scholar]

197. Lee H. Chang H. Park JY. Kim SY. Choi KM. Song W. Exercise training improves basal blood glucose metabolism with no changes of cytosolic inhibitor B kinase or c-Jun N-terminal kinase activation in skeletal muscle of Otsuka Long-Evans Tokushima fatty rats. Exp Physiol. 2011;96:689–698. [PubMed] [Google Scholar]

198. Lee HH. Kim H. Lee JW. Kim YS. Yang HY. Chang HK. Lee TH. Shin MC. Lee MH. Shin MS. Park S. Baek S. Kim CJ. Maternal swimming during pregnancy enhances short-term memory and neurogenesis in the hippocampus of rat pups. Brain Dev. 2006;28:147–154. [PubMed] [Google Scholar]

199. Lee HJ. Chung K. Lee H. Lee K. Lim JH. Song J. Downregulation of mitochondrial lon protease impairs mitochondrial function and causes hepatic insulin resistance in human liver SK-HEP-1 cells. Diabetologia. 2011;54:1437–1446. [PubMed] [Google Scholar]

200. Lee JW. Bae SH. Jeong JW. Kim SH. Kim KW. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med. 2004;36:1–12. [PubMed] [Google Scholar]

201. Leeuwenburgh C. Ji LL. Glutathione depletion in rested and exercised mice: biochemical consequence and adaptation. Arch Biochem Biophys. 1995;316:941–949. [PubMed] [Google Scholar]

202. Leick L. Lyngby SS. Wojtaszewski JF. Pilegaard H. PGC-1alpha is required for training-induced prevention of age-associated decline in mitochondrial enzymes in mouse skeletal muscle. Exp Gerontol. 2010;45:336–342. [PubMed] [Google Scholar]

203. Lew H. Pyke S. Quintanilha A. Changes in the glutathione status of plasma, liver and muscle following exhaustive exercise in rats. FEBS Lett. 1985;185:262–266. [PubMed] [Google Scholar]

204. Li M. Fukagawa NK. Age-related changes in redox signaling and VSMC function. Antioxid Redox Signal. 2010;12:641–655. [PMC free article] [PubMed] [Google Scholar]

205. Li Y. Xu S. Giles A. Nakamura K. Lee JW. Hou X. Donmez G. Li J. Luo Z. Walsh K. Guarente L. Zang M. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J. 2011;25:1664–1679. [PMC free article] [PubMed] [Google Scholar]

206. Li Y. Xu W. McBurney MW. Longo VD. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab. 2008;8:38–48. [PMC free article] [PubMed] [Google Scholar]

207. Li YP. Schwartz RJ. TNF-alpha regulates early differentiation of C2C12 myoblasts in an autocrine fashion. FASEB J. 2001;15:1413–1415. [PubMed] [Google Scholar]

208. Liao P. Zhou J. Ji LL. Zhang Y. Eccentric contraction induces inflammatory responses in rat skeletal muscle: role of tumor necrosis factor-alpha. Am J Physiol Regul Integr Comp Physiol. 2010;298:R599–R607. [PubMed] [Google Scholar]

209. Lillig CH. Holmgren A. Thioredoxin and related molecules—from biology to health and disease. Antioxid Redox Signal. 2007;9:25–47. [PubMed] [Google Scholar]

210. Lim JH. Lee YM. Chun YS. Chen J. Kim JE. Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell. 2010;38:864–878. [PubMed] [Google Scholar]

211. Limoli CL. Rola R. Giedzinski E. Mantha S. Huang TT. Fike JR. Cell-density-dependent regulation of neural precursor cell function. Proc Natl Acad Sci U S A. 2004;101:16052–16057. [PMC free article] [PubMed] [Google Scholar]

212. Lin J. Wu H. Tarr PT. Zhang CY. Wu Z. Boss O. Michael LF. Puigserver P. Isotani E. Olson EN. Lowell BB. Bassel-Duby R. Spiegelman BM. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibers. Nature. 2002;418:797–801. [PubMed] [Google Scholar]

213. Lira VA. Benton CR. Yan Z. Bonen A. PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab. 2010;299:E145–E161. [PMC free article] [PubMed] [Google Scholar]

214. Locke M. Noble EG. Tanguay RM. Feild MR. Ianuzzo SE. Ianuzzo CD. Activation of heat-shock transcription factor in rat heart after heat shock and exercise. Am J Physiol. 1995;268:C1387–C1394. [PubMed] [Google Scholar]

215. Loft S. Poulsen HE. Cancer risk and oxidative DNA damage in man. J Mol Med. 1996;74:297–312. [PubMed] [Google Scholar]

216. Lombard DB. Alt FW. Cheng HL. Bunkenborg J. Streeper RS. Mostoslavsky R. Kim J. Yancopoulos G. Valenzuela D. Murphy A. Yang Y. Chen Y. Hirschey MD. Bronson RT. Haigis M. Guarente LP. Farese RV., Jr. Weissman S. Verdin E. Schwer B. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 2007;27:8807–8814. [PMC free article] [PubMed] [Google Scholar]

217. Lopez-Torres M. Perez-Campo R. Rojas C. Cadenas S. Barja G. Maximum life span in vertebrates: relationship with liver antioxidant enzymes, glutathione system, ascorbate, urate, sensitivity to peroxidation, true malondialdehyde, in vivo H2O2, and basal and maximum aerobic capacity. Mech Ageing Dev. 1993;70:177–199. [PubMed] [Google Scholar]

218. Lundberg JO. Weitzberg E. Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7:156–167. [PubMed] [Google Scholar]

219. Lundby C. Calbet JA. Robach P. The response of human skeletal muscle tissue to hypoxia. Cell Mol Life Sci. 2009;66:3615–3623. [PubMed] [Google Scholar]

220. Lundby C. Gassmann M. Pilegaard H. Regular endurance training reduces the exercise induced HIF-1alpha and HIF-2alpha mRNA expression in human skeletal muscle in normoxic conditions. Eur J Appl Physiol. 2006;96:363–369. [PubMed] [Google Scholar]

221. Mabley JG. Pacher P. Deb A. Wallace R. Elder RH. Szabo C. Potential role for 8-oxoguanine DNA glycosylase in regulating inflammation. FASEB J. 2005;19:290–292. [PubMed] [Google Scholar]

222. Mabley JG. Wallace R. Pacher P. Murphy K. Szabo C. Inhibition of poly(adenosine diphosphate-ribose) polymerase by the active form of vitamin D. Int J Mol Med. 2007;19:947–952. [PMC free article] [PubMed] [Google Scholar]

223. Mahoney DJ. Parise G. Melov S. Safdar A. Tarnopolsky MA. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J. 2005;19:1498–1500. [PubMed] [Google Scholar]

224. Mao Z. Hine C. Tian X. Van Meter M. Au M. Vaidya A. Seluanov A. Gorbunova V. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332:1443–1446. [PMC free article] [PubMed] [Google Scholar]

225. Marfe G. Tafani M. Pucci B. Di Stefano C. Indelicato M. Andreoli A. Russo MA. Sinibaldi-Salimei P. Manzi V. The effect of marathon on mRNA expression of anti-apoptotic and pro-apoptotic proteins and sirtuins family in male recreational long-distance runners. BMC Physiol. 2010;10:7. [PMC free article] [PubMed] [Google Scholar] Retracted

226. Martin GM. Austad SN. Johnson TE. Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet. 1996;13:25–34. [PubMed] [Google Scholar]

227. Marton O. Koltai E. Nyakas C. Bakonyi T. Zenteno-Savin T. Kumagai S. Goto S. Radak Z. Aging and exercise affect the level of protein acetylation and SIRT1 activity in cerebellum of male rats. Biogerontology. 2010;11:679–686. [PubMed] [Google Scholar]

228. Marumoto M. Suzuki S. Hosono A. Arakawa K. Shibata K. Fuku M. Goto C. Tokudome Y. Hoshino H. Imaeda N. Kobayashi M. Yodoi J. Tokudome S. Changes in thioredoxin concentrations: an observation in an ultra-marathon race. Environ Health Prev Med. 2010;15:129–134. [PMC free article] [PubMed] [Google Scholar]

229. McKenna MJ. Medved I. Goodman CA. Brown MJ. Bjorksten AR. Murphy KT. Petersen AC. Sostaric S. Gong X. N-acetylcysteine attenuates the decline in muscle Na+,K+-pump activity and delays fatigue during prolonged exercise in humans. J Physiol. 2006;576:279–288. [PMC free article] [PubMed] [Google Scholar]

230. Merker K. Sitte N. Grune T. Hydrogen peroxide-mediated protein oxidation in young and old human MRC-5 fibroblasts. Arch Biochem Biophys. 2000;375:50–54. [PubMed] [Google Scholar]

231. Michan S. Li Y. Chou MM. Parrella E. Ge H. Long JM. Allard JS. Lewis K. Miller M. Xu W. Mervis RF. Chen J. Guerin KI. Smith LE. McBurney MW. Sinclair DA. Baudry M. de Cabo R. Longo VD. SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci. 2010;30:9695–9707. [PMC free article] [PubMed] [Google Scholar]

232. Michishita E. Park JY. Burneskis JM. Barrett JC. Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005;16:4623–4635. [PMC free article] [PubMed] [Google Scholar]

233. Milner J. Allison SJ. SIRT1, p53 and mitotic chromosomes. Cell Cycle. 2011;10:3049. [PubMed] [Google Scholar]

234. Minet E. Michel G. Mottet D. Raes M. Michiels C. Transduction pathways involved in Hypoxia-Inducible Factor-1 phosphorylation and activation. Free Radic Biol Med. 2001;31:847–855. [PubMed] [Google Scholar]

235. Mintz S. Robin ED. Redox state of free nicotinamide-adenine nucleotides in the cytoplasm and mitochondria of alveolar macrophages. J Clin Invest. 1971;50:1181–1186. [PMC free article] [PubMed] [Google Scholar]

236. Miranda S. Foncea R. Guerrero J. Leighton F. Oxidative stress and upregulation of mitochondrial biogenesis genes in mitochondrial DNA-depleted HeLa cells. Biochem Biophys Res Commun. 1999;258:44–49. [PubMed] [Google Scholar]

237. Mofarrahi M. Hussain SN. Expression and functional roles of angiopoietin-2 in skeletal muscles. PloS One. 2011;6:e22882. [PMC free article] [PubMed] [Google Scholar]

238. Mohanraj P. Merola AJ. Wright VP. Clanton TL. Antioxidants protect rat diaphragmatic muscle function under hypoxic conditions. J Appl Physiol. 1998;84:1960–1966. [PubMed] [Google Scholar]

239. Mostoslavsky R. Chua KF. Lombard DB. Pang WW. Fischer MR. Gellon L. Liu P. Mostoslavsky G. Franco S. Murphy MM. Mills KD. Patel P. Hsu JT. Hong AL. Ford E. Cheng HL. Kennedy C. Nunez N. Bronson R. Frendewey D. Auerbach W. Valenzuela D. Karow M. Hottiger MO. Hursting S. Barrett JC. Guarente L. Mulligan R. Demple B. Yancopoulos GD. Alt FW. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124:315–329. [PubMed] [Google Scholar]

240. Mounier R. Pedersen BK. Plomgaard P. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle. Exp Physiol. 2010;95:899–907. [PubMed] [Google Scholar]

241. Mounier R. Pialoux V. Roels B. Thomas C. Millet G. Mercier J. Coudert J. Fellmann N. Clottes E. Effect of intermittent hypoxic training on HIF gene expression in human skeletal muscle and leukocytes. Eur J Appl Physiol. 2009;105:515–524. [PubMed] [Google Scholar]

242. Mozzetta C. Consalvi S. Saccone V. Forcales SV. Puri PL. Palacios D. Selective control of Pax7 expression by TNF-activated p38alpha/polycomb repressive complex 2 (PRC2) signaling during muscle satellite cell differentiation. Cell Cycle. 2011;10:191–198. [PubMed] [Google Scholar]

243. Mozzetta C. Minetti G. Puri PL. Regenerative pharmacology in the treatment of genetic diseases: the paradigm of muscular dystrophy. Int J Biochem Cell Biol. 2009;41:701–710. [PMC free article] [PubMed] [Google Scholar]

244. Muller FL. Liu Y. Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 2004;279:49064–49073. [PubMed] [Google Scholar]

245. Murakami T. Shimomura Y. Yoshimura A. Sokabe M. Fujitsuka N. Induction of nuclear respiratory factor-1 expression by an acute bout of exercise in rat muscle. Biochim Biophys Acta. 1998;1381:113–122. [PubMed] [Google Scholar]

246. Murton AJ. Constantin D. Greenhaff PL. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta. 2008;1782:730–743. [PubMed] [Google Scholar]

247. Myers J. Prakash M. Froelicher V. Do D. Partington S. Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346:793–801. [PubMed] [Google Scholar]

248. Nakabeppu Y. Sakumi K. Sakamoto K. Tsuchimoto D. Tsuzuki T. Nakatsu Y. Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids. Biol Chem. 2006;387:373–379. [PubMed] [Google Scholar]

249. Nakamoto H. Kaneko T. Tahara S. Hayashi E. Naito H. Radak Z. Goto S. Regular exercise reduces 8-oxodG in the nuclear and mitochondrial DNA and modulates the DNA repair activity in the liver of old rats. Exp Gerontol. 2007;42:287–295. [PubMed] [Google Scholar]

250. Narasimhan P. Liu J. Song YS. Massengale JL. Chan PH. VEGF Stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions. Stroke. 2009;40:1467–1473. [PMC free article] [PubMed] [Google Scholar]

251. Nasrin N. Wu X. Fortier E. Feng Y. Bare OC. Chen S. Ren X. Wu Z. Streeper RS. Bordone L. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem. 2010;285:31995–32002. [PMC free article] [PubMed] [Google Scholar]

252. Nemoto S. Fergusson MM. Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha} J Biol Chem. 2005;280:16456–16460. [PubMed] [Google Scholar]

253. Ngo JK. Davies KJ. Mitochondrial Lon protease is a human stress protein. Free Radic Biol Med. 2009;46:1042–1048. [PMC free article] [PubMed] [Google Scholar]

254. Ngo JK. Pomatto LC. Bota DA. Koop AL. Davies KJ. Impairment of lon-induced protection against the accumulation of oxidized proteins in senescent wi-38 fibroblasts. J Gerontol A Biol Sci Med Sci. 2011;66:1178–1185. [PMC free article] [PubMed] [Google Scholar]

255. Niess AM. Simon P. Response and adaptation of skeletal muscle to exercise—the role of reactive oxygen species. Fron Biosci. 2007;12:4826–4838. [PubMed] [Google Scholar]

256. Nigam S. Schewe T. Phospholipase A(2)s and lipid peroxidation. Biochim Biophys Acta. 2000;1488:167–181. [PubMed] [Google Scholar]

257. Nikolaidis MG. Jamurtas AZ. Paschalis V. Fatouros IG. Koutedakis Y. Kouretas D. The effect of muscle-damaging exercise on blood and skeletal muscle oxidative stress: magnitude and time-course considerations. Sports Med. 2008;38:579–606. [PubMed] [Google Scholar]

258. Nikolaidis MG. Kyparos A. Hadziioannou M. Panou N. Samaras L. Jamurtas AZ. Kouretas D. Acute exercise markedly increases blood oxidative stress in boys and girls. Appl Physiol Nutr Metab. 2007;32:197–205. [PubMed] [Google Scholar]

259. Nikolaidis MG. Kyparos A. Vrabas IS. F-isoprostane formation, measurement and interpretation: the role of exercise. Prog Lipid Res. 2011;50:89–103. [PubMed] [Google Scholar]

260. Nishimura S. Involvement of mammalian OGG1(MMH) in excision of the 8-hydroxyguanine residue in DNA. Free Radic Biol Med. 2002;32:813–821. [PubMed] [Google Scholar]

261. Nishiyama A. Matsui M. Iwata S. Hirota K. Masutani H. Nakamura H. Takagi Y. Sono H. Gon Y. Yodoi J. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem. 1999;274:21645–21650. [PubMed] [Google Scholar]

262. Noble M. Mayer-Proschel M. Proschel C. Redox regulation of precursor cell function: insights and paradoxes. Antioxid Redox Signal. 2005;7:1456–1467. [PubMed] [Google Scholar]

263. Norrbom J. Wallman SE. Gustafsson T. Rundqvist H. Jansson E. Sundberg CJ. Training response of mitochondrial transcription factors in human skeletal muscle. Acta Physiologica. 2010;198:71–79. [PubMed] [Google Scholar]

264. Nystrom T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 2005;24:1311–1317. [PMC free article] [PubMed] [Google Scholar]

265. O'Hagan KA. Cocchiglia S. Zhdanov AV. Tambuwala MM. Cummins EP. Monfared M. Agbor TA. Garvey JF. Papkovsky DB. Taylor CT. Allan BB. PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proc Natl Acad Sci U S A. 2009;106:2188–2193. [PMC free article] [PubMed] [Google Scholar]

266. Ochi E. Nakazato K. Ishii N. Muscular hypertrophy and changes in cytokine production after eccentric training in the rat skeletal muscle. J Strength Cond Res. 2011;25:2283–2292. [PubMed] [Google Scholar]

267. Ogura M. Nakamura Y. Tanaka D. Zhuang X. Fujita Y. Obara A. Hamasaki A. Hosokawa M. Inagaki N. Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1. Biochem Biophys Res Commun. 2010;393:73–78. [PubMed] [Google Scholar]

268. Oh-Ishi S. Kizaki T. Yamashita H. Nagata N. Suzuki K. Taniguchi N. Ohno H. Alterations of superoxide dismutase iso-enzyme activity, content, and mRNA expression with aging in rat skeletal muscle. Mech Ageing Dev. 1995;84:65–76. [PubMed] [Google Scholar]

269. Ookawara T. Haga S. Ha S. Oh-Ishi S. Toshinai K. Kizaki T. Ji LL. Suzuki K. Ohno H. Effects of endurance training on three superoxide dismutase isoenzymes in human plasma. Free Radic Res. 2003;37:713–719. [PubMed] [Google Scholar]

270. Ookawara T. Suzuk K. Haga S. Ha S. Chung KS. Toshinai K. Hamaoka T. Katsumura T. Takemasa T. Mizuno M. Hitomi Y. Kizaki T. Suzuki K. Ohno H. Transcription regulation of gene expression in human skeletal muscle in response to endurance training. Res Commun Mol Pathol Pharmacol. 2002;111:41–54. [PubMed] [Google Scholar]

271. Oppikofer M. Kueng S. Martino F. Soeroes S. Hancock SM. Chin JW. Fischle W. Gasser SM. A dual role of H4K16 acetylation in the establishment of yeast silent chromatin. EMBO J. 2011;30:2610–2621. [PMC free article] [PubMed] [Google Scholar]

272. Ortenblad N. Young JF. Oksbjerg N. Nielsen JH. Lambert IH. Reactive oxygen species are important mediators of taurine release from skeletal muscle cells. Am J Physiol Cell Physiol. 2003;284:C1362–C1373. [PubMed] [Google Scholar]

273. Pagliarini DJ. Calvo SE. Chang B. Sheth SA. Vafai SB. Ong SE. Walford GA. Sugiana C. Boneh A. Chen WK. Hill DE. Vidal M. Evans JG. Thorburn DR. Carr SA. Mootha VK. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008;134:112–123. [PMC free article] [PubMed] [Google Scholar]

274. Palacios OM. Carmona JJ. Michan S. Chen KY. Manabe Y. Ward JL., 3rd Goodyear LJ. Tong Q. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging. 2009;1:771–783. [PMC free article] [PubMed] [Google Scholar]

275. Pardo PS. Mohamed JS. Lopez MA. Boriek AM. Induction of Sirt1 by mechanical stretch of skeletal muscle through the early response factor EGR1 triggers an antioxidative response. J Biol Chem. 2011;286:2559–2566. [PMC free article] [PubMed] [Google Scholar]

276. Park JY. Wang PY. Matsumoto T. Sung HJ. Ma W. Choi JW. Anderson SA. Leary SC. Balaban RS. Kang JG. Hwang PM. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ Res. 2009;105:705–712. 11 p following 712. [PMC free article] [PubMed] [Google Scholar]

277. Patwari P. Higgins LJ. Chutkow WA. Yoshioka J. Lee RT. The interaction of thioredoxin with Txnip. Evidence for formation of a mixed disulfide by disulfide exchange. J Biol Chem. 2006;281:21884–21891. [PMC free article] [PubMed] [Google Scholar]

278. Pedersen BK. Muscular IL-6 and its role as an energy sensor. Med Sci Sports Exerc. 2012;44:392–396. [PubMed] [Google Scholar]

279. Pedersen BK. Steensberg A. Keller P. Keller C. Fischer C. Hiscock N. van Hall G. Plomgaard P. Febbraio MA. Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects. Pflugers Arch. 2003;446:9–16. [PubMed] [Google Scholar]

280. Peng L. Yuan Z. Ling H. Fukasawa K. Robertson K. Olashaw N. Koomen J. Chen J. Lane WS. Seto E. SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol Cell Biol. 2011;31:4720–4734. [PMC free article] [PubMed] [Google Scholar]

281. Perez-de-Arce K. Foncea R. Leighton F. Reactive oxygen species mediates homocysteine-induced mitochondrial biogenesis in human endothelial cells: modulation by antioxidants. Biochem Biophys Res Commun. 2005;338:1103–1109. [PubMed] [Google Scholar]

282. Perillo B. Ombra MN. Bertoni A. Cuozzo C. Sacchetti S. Sasso A. Chiariotti L. Malorni A. Abbondanza C. Avvedimento EV. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science. 2008;319:202–206. [PubMed] [Google Scholar]

283. Petersen AC. McKenna MJ. Medved I. Murphy KT. Brown MJ. Della Gatta P. Cameron-Smith D. Infusion with the antioxidant N-acetylcysteine attenuates early adaptive responses to exercise in human skeletal muscle. Acta Physiol. 2012;204:382–392. [PubMed] [Google Scholar]

284. Philp A. Chen A. Lan D. Meyer GA. Murphy AN. Knapp AE. Olfert IM. McCurdy CE. Marcotte GR. Hogan MC. Baar K. Schenk S. Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise. J Biol Chem. 2011;286:30561–30570. [PMC free article] [PubMed] [Google Scholar]

285. Pialoux V. Mounier R. Brown AD. Steinback CD. Rawling JM. Poulin MJ. Relationship between oxidative stress and HIF-1 alpha mRNA during sustained hypoxia in humans. Free Radic Biol Med. 2009;46:321–326. [PubMed] [Google Scholar]

286. Pilegaard H. Saltin B. Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol. 2003;546:851–858. [PMC free article] [PubMed] [Google Scholar]

287. Pisconti A. Brunelli S. Di Padova M. De Palma C. Deponti D. Baesso S. Sartorelli V. Cossu G. Clementi E. Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion. J Cell Biol. 2006;172:233–244. [PMC free article] [PubMed] [Google Scholar] Retracted

288. Pogozelski AR. Geng T. Li P. Yin X. Lira VA. Zhang M. Chi JT. Yan Z. p38gamma mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice. PloS One. 2009;4:e7934. [PMC free article] [PubMed] [Google Scholar]

289. Pogribny I. Raiche J. Slovack M. Kovalchuk O. Dose-dependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem Biophys Res Commun. 2004;320:1253–1261. [PubMed] [Google Scholar]

290. Poli G. Schaur RJ. Siems WG. Leonarduzzi G. 4-hydroxynonenal: a membrane lipid oxidation product of medicinal interest. Med Res Rev. 2008;28:569–631. [PubMed] [Google Scholar]

291. Ponugoti B. Kim DH. Xiao Z. Smith Z. Miao J. Zang M. Wu SY. Chiang CM. Veenstra TD. Kemper JK. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem. 2010;285:33959–33970. [PMC free article] [PubMed] [Google Scholar]

292. Porcu M. Chiarugi A. The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension. Trends Pharmacol Sci. 2005;26:94–103. [PubMed] [Google Scholar]

293. Powell SR. Samuel SM. Wang P. Divald A. Thirunavukkarasu M. Koneru S. Wang X. Maulik N. Upregulation of myocardial 11S-activated proteasome in experimental hyperglycemia. J Mol Cell Cardiol. 2008;44:618–621. [PubMed] [Google Scholar]

294. Powers SK. Duarte J. Kavazis AN. Talbert EE. Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp Physiol. 2010;95:1–9. [PMC free article] [PubMed] [Google Scholar]

295. Powers SK. Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88:1243–1276. [PMC free article] [PubMed] [Google Scholar]

296. Powers SK. Ji LL. Leeuwenburgh C. Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc. 1999;31:987–997. [PubMed] [Google Scholar]

297. Powers SK. Nelson WB. Hudson MB. Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med. 2011;51:942–950. [PubMed] [Google Scholar]

298. Powers SK. Talbert EE. Adhihetty PJ. Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol. 2011;589:2129–2138. [PMC free article] [PubMed] [Google Scholar]

299. Proia P. Bianco A. Schiera G. Saladino P. Pomara F. Petrucci M. Traina M. Palma A. The effects of a 3-week training on basal biomarkers in professional soccer players during the preseason preparation period. J Sports Med Phys Fitness. 2012;52:102–106. [PubMed] [Google Scholar]

300. Qi Z. He J. Su Y. He Q. Liu J. Yu L. Al-Attas O. Hussain T. Ding S. Ji L. Qian M. Physical exercise regulates p53 activity targeting SCO2 and increases mitochondrial COX biogenesis in cardiac muscle with age. PloS One. 2011;6:e21140. [PMC free article] [PubMed] [Google Scholar]

301. Qi Z. He J. Zhang Y. Shao Y. Ding S. Exercise training attenuates oxidative stress and decreases p53 protein content in skeletal muscle of type 2 diabetic Goto-Kakizaki rats. Free Radic Biol Med. 2011;50:794–800. [PubMed] [Google Scholar]

302. Qiu X. Brown K. Hirschey MD. Verdin E. Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010;12:662–667. [PubMed] [Google Scholar]

303. Radak Z. Apor P. Pucsok J. Berkes I. Ogonovszky H. Pavlik G. Nakamoto H. Goto S. Marathon running alters the DNA base excision repair in human skeletal muscle. Life Sci. 2003;72:1627–1633. [PubMed] [Google Scholar]

304. Radak Z. Asano K. Inoue M. Kizaki T. Oh-Ishi S. Suzuki K. Taniguchi N. Ohno H. Superoxide dismutase derivative reduces oxidative damage in skeletal muscle of rats during exhaustive exercise. J Appl Physiol. 1995;79:129–135. [PubMed] [Google Scholar]

305. Radak Z. Asano K. Inoue M. Kizaki T. Oh-Ishi S. Suzuki K. Taniguchi N. Ohno H. Superoxide dismutase derivative prevents oxidative damage in liver and kidney of rats induced by exhausting exercise. Eur J Appl Physiol Occup Physiol. 1996;72:189–194. [PubMed] [Google Scholar]

306. Radak Z. Atalay M. Jakus J. Boldogh I. Davies K. Goto S. Exercise improves import of 8-oxoguanine DNA glycosylase into the mitochondrial matrix of skeletal muscle and enhances the relative activity. Free Radic Biol Med. 2009;46:238–243. [PMC free article] [PubMed] [Google Scholar]

307. Radak Z. Boldogh I. 8-Oxo-7,8-dihydroguanine: links to gene expression, aging, and defense against oxidative stress. Free Radic Biol Med. 2010;49:587–596. [PMC free article] [PubMed] [Google Scholar]

308. Radak Z. Bori Z. Koltai E. Fatouros IG. Jamurtas AZ. Douroudos II. Terzis G. Nikolaidis MG. Chatzinikolaou A. Sovatzidis A. Kumagai S. Naito H. Boldogh I. Age-dependent changes in 8-oxoguanine-DNA glycosylase activity are modulated by adaptive responses to physical exercise in human skeletal muscle. Free Radic Biol Med. 2011;51:417–423. [PMC free article] [PubMed] [Google Scholar]

309. Radak Z. Chung HY. Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med. 2008;44:153–159. [PubMed] [Google Scholar]

310. Radak Z. Chung HY. Koltai E. Taylor AW. Goto S. Exercise, oxidative stress and hormesis. Ageing Res Rev. 2008;7:34–42. [PubMed] [Google Scholar]

311. Radak Z. Chung HY. Naito H. Takahashi R. Jung KJ. Kim HJ. Goto S. Age-associated increase in oxidative stress and nuclear factor kappaB activation are attenuated in rat liver by regular exercise. FASEB J. 2004;18:749–750. [PubMed] [Google Scholar]

312. Radak Z. Hart N. Sarga L. Koltai E. Atalay M. Ohno H. Boldogh I. Exercise plays a preventive role against Alzheimer's disease. J Alzheimers Dis. 2010;20:777–783. [PubMed] [Google Scholar]

313. Radak Z. Kumagai S. Nakamoto H. Goto S. 8-Oxoguanosine and uracil repair of nuclear and mitochondrial DNA in red and white skeletal muscle of exercise-trained old rats. J Appl Physiol. 2007;102:1696–1701. [PubMed] [Google Scholar]

314. Radak Z. Naito H. Kaneko T. Tahara S. Nakamoto H. Takahashi R. Cardozo-Pelaez F. Goto S. Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle. Pflugers Arch. 2002;445:273–278. [PubMed] [Google Scholar]

315. Radak Z. Naito H. Taylor AW. Goto S. Nitric oxide: is it the cause of muscle soreness? Nitric Oxide. 2012;26:89–94. [PubMed] [Google Scholar]

316. Radak Z. Nakamura A. Nakamoto H. Asano K. Ohno H. Goto S. A period of anaerobic exercise increases the accumulation of reactive carbonyl derivatives in the lungs of rats. Pflugers Arch. 1998;435:439–441. [PubMed] [Google Scholar]

317. Radak Z. Sasvari M. Nyakas C. Pucsok J. Nakamoto H. Goto S. Exercise preconditioning against hydrogen peroxide-induced oxidative damage in proteins of rat myocardium. Arch Biochem Biophys. 2000;376:248–251. [PubMed] [Google Scholar]

318. Radak Z. Taylor AW. Ohno H. Goto S. Adaptation to exercise-induced oxidative stress: from muscle to brain. Exerc Immunol Rev. 2001;7:90–107. [PubMed] [Google Scholar]

319. Radak Z. Zhao Z. Goto S. Koltai E. Age-associated neurodegeneration and oxidative damage to lipids, proteins and DNA. Mol Aspects Med. 2011;32:305–315. [PubMed] [Google Scholar]

320. Raichlen DA. Armstrong H. Lieberman DE. Calcaneus length determines running economy: implications for endurance running performance in modern humans and Neandertals. J Hum Evol. 2011;60:299–308. [PubMed] [Google Scholar]

321. Rantanen J. Hurme T. Lukka R. Heino J. Kalimo H. Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells. Lab Invest. 1995;72:341–347. [PubMed] [Google Scholar]

322. Rapoport SM. Schewe T. The maturational breakdown of mitochondria in reticulocytes. Biochim Biophys Acta. 1986;864:471–495. [PubMed] [Google Scholar]

323. Raymond J. Segre D. The effect of oxygen on biochemical networks and the evolution of complex life. Science. 2006;311:1764–1767. [PubMed] [Google Scholar]

324. Reid MB. Khawli FA. Moody MR. Reactive oxygen in skeletal muscle. III. Contractility of unfatigued muscle. J Appl Physiol. 1993;75:1081–1087. [PubMed] [Google Scholar]

325. Reid MB. Shoji T. Moody MR. Entman ML. Reactive oxygen in skeletal muscle. II. Extracellular release of free radicals. J Appl Physiol. 1992;73:1805–1809. [PubMed] [Google Scholar]

326. Reid MB. Stokic DS. Koch SM. Khawli FA. Leis AA. N-acetylcysteine inhibits muscle fatigue in humans. J Clin Invest. 1994;94:2468–2474. [PMC free article] [PubMed] [Google Scholar]

327. Renault V. Thornell LE. Butler-Browne G. Mouly V. Human skeletal muscle satellite cells: aging, oxidative stress and the mitotic clock. Exp Gerontol. 2002;37:1229–1236. [PubMed] [Google Scholar]

328. Richardson RS. Noyszewski EA. Kendrick KF. Leigh JS. Wagner PD. Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest. 1995;96:1916–1926. [PMC free article] [PubMed] [Google Scholar]

329. Ristow M. Schmeisser S. Extending life span by increasing oxidative stress. Free Radic Biol Med. 2011;51:327–336. [PubMed] [Google Scholar]

330. Ristow M. Zarse K. How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis) Exp Gerontol. 2010;45:410–418. [PubMed] [Google Scholar]

331. Ristow M. Zarse K. Oberbach A. Kloting N. Birringer M. Kiehntopf M. Stumvoll M. Kahn CR. Bluher M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009;106:8665–8670. [PMC free article] [PubMed] [Google Scholar]

332. Roberts CK. Ng C. Hama S. Eliseo AJ. Barnard RJ. Effect of a short-term diet and exercise intervention on inflammatory/anti-inflammatory properties of HDL in overweight/obese men with cardiovascular risk factors. J Appl Physiol. 2006;101:1727–1732. [PubMed] [Google Scholar]

333. Rogers CJ. Colbert LH. Greiner JW. Perkins SN. Hursting SD. Physical activity and cancer prevention: pathways and targets for intervention. Sports Med. 2008;38:271–296. [PubMed] [Google Scholar]

334. Rojas Vega S. Knicker A. Hollmann W. Bloch W. Struder HK. Effect of resistance exercise on serum levels of growth factors in humans. Horm Metab Res. 2010;42:982–986. [PubMed] [Google Scholar]

335. Rollo CD. Growth negatively impacts the life span of mammals. Evol Dev. 2002;4:55–61. [PubMed] [Google Scholar]

336. Rossi CA. Pozzobon M. Ditadi A. Archacka K. Gastaldello A. Sanna M. Franzin C. Malerba A. Milan G. Cananzi M. Schiaffino S. Campanella M. Vettor R. De Coppi P. Clonal characterization of rat muscle satellite cells: proliferation, metabolism and differentiation define an intrinsic heterogeneity. PloS One. 2010;5:e8523. [PMC free article] [PubMed] [Google Scholar]

337. Rottgers K. Zufall N. Guiard B. Voos W. The ClpB homolog Hsp78 is required for the efficient degradation of proteins in the mitochondrial matrix. J Biol Chem. 2002;277:45829–45837. [PubMed] [Google Scholar]

338. Roy S. Khanna S. Sen CK. Redox regulation of the VEGF signaling path and tissue vascularization: hydrogen peroxide, the common link between physical exercise and cutaneous wound healing. Free Radic Biol Med. 2008;44:180–192. [PubMed] [Google Scholar]

339. Russell AP. Feilchenfeldt J. Schreiber S. Praz M. Crettenand A. Gobelet C. Meier CA. Bell DR. Kralli A. Giacobino JP. Deriaz O. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes. 2003;52:2874–2881. [PubMed] [Google Scholar]

340. Russell AP. Hesselink MK. Lo SK. Schrauwen P. Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise. FASEB J. 2005;19:986–988. [PubMed] [Google Scholar]

341. Ruxton GD. Wilkinson DM. Thermoregulation and endurance running in extinct hominins: Wheeler's models revisited. J Hum Evol. 2011;61:169–175. [PubMed] [Google Scholar]

342. Saborido A. Naudi A. Portero-Otin M. Pamplona R. Megias A. Stanozolol treatment decreases the mitochondrial ROS generation and oxidative stress induced by acute exercise in rat skeletal muscle. J Appl Physiol. 2011;110:661–669. [PubMed] [Google Scholar]

343. Sahlin K. Shabalina IG. Mattsson CM. Bakkman L. Fernstrom M. Rozhdestvenskaya Z. Enqvist JK. Nedergaard J. Ekblom B. Tonkonogi M. Ultraendurance exercise increases the production of reactive oxygen species in isolated mitochondria from human skeletal muscle. J Appl Physiol. 2010;108:780–787. [PMC free article] [PubMed] [Google Scholar]

344. Salminen A. Kauppinen A. Suuronen T. Kaarniranta K. SIRT1 longevity factor suppresses NF-kappaB -driven immune responses: regulation of aging via NF-kappaB acetylation? BioEssays. 2008;30:939–942. [PubMed] [Google Scholar]

345. Sanchez-Lopez E. Lopez AF. Esteban V. Yague S. Egido J. Ruiz-Ortega M. Alvarez-Arroyo MV. Angiotensin II regulates vascular endothelial growth factor via hypoxia-inducible factor-1alpha induction and redox mechanisms in the kidney. Antioxid Redox Signal. 2005;7:1275–1284. [PubMed] [Google Scholar]

346. Sandstrom ME. Zhang SJ. Bruton J. Silva JP. Reid MB. Westerblad H. Katz A. Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle. J Physiol. 2006;575:251–262. [PMC free article] [PubMed] [Google Scholar]

347. Sarkar D. Lebedeva IV. Emdad L. Kang DC. Baldwin AS., Jr. Fisher PB. Human polynucleotide phosphorylase (hPNPaseold-35): a potential link between aging and inflammation. Cancer Res. 2004;64:7473–7478. [PubMed] [Google Scholar]

348. Sato Y. Nanri H. Ohta M. Kasai H. Ikeda M. Increase of human MTH1 and decrease of 8-hydroxydeoxyguanosine in leukocyte DNA by acute and chronic exercise in healthy male subjects. Biochem Biophys Res Commun. 2003;305:333–338. [PubMed] [Google Scholar]

349. Schaloske RH. Dennis EA. The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta. 2006;1761:1246–1259. [PubMed] [Google Scholar]

350. Scheele C. Nielsen S. Pedersen BK. ROS and myokines promote muscle adaptation to exercise. Trends Endocrinol Metab. 2009;20:95–99. [PubMed] [Google Scholar]

351. Scher MB. Vaquero A. Reinberg D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev. 2007;21:920–928. [PMC free article] [PubMed] [Google Scholar]

352. Schug TT. Li X. Sirtuin 1 in lipid metabolism and obesity. Ann Med. 2011;43:198–211. [PMC free article] [PubMed] [Google Scholar]

353. Schwarzer M. Britton SL. Koch LG. Wisloff U. Doenst T. Low intrinsic aerobic exercise capacity and systemic insulin resistance are not associated with changes in myocardial substrate oxidation or insulin sensitivity. Basic Res Cardiol. 2010;105:357–364. [PMC free article] [PubMed] [Google Scholar]

354. Sedding DG. FoxO transcription factors in oxidative stress response and ageing—a new fork on the way to longevity? Biol Chem. 2008;389:279–283. [PubMed] [Google Scholar]

355. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Ann Rev Cell Dev Biol. 1999;15:551–578. [PubMed] [Google Scholar]

356. Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol. 1995;79:675–686. [PubMed] [Google Scholar]

357. Sen CK. Oxygen toxicity and antioxidants: state of the art. Indian J Physiol Pharmacol. 1995;39:177–196. [PubMed] [Google Scholar]

358. Sen CK. Cellular thiols and redox-regulated signal transduction. Curr Top Cell Regul. 2000;36:1–30. [PubMed] [Google Scholar]

359. Sen CK. Antioxidants in exercise nutrition. Sports Med. 2001;31:891–908. [PubMed] [Google Scholar]

360. Sen CK. Atalay M. Hanninen O. Exercise-induced oxidative stress: glutathione supplementation and deficiency. J Appl Physiol. 1994;77:2177–2187. [PubMed] [Google Scholar]

361. Sen CK. Packer L. Thiol homeostasis and supplements in physical exercise. Am J Clin Nutr. 2000;72:653S–669S. [PubMed] [Google Scholar]

362. Sen CK. Rankinen T. Vaisanen S. Rauramaa R. Oxidative stress after human exercise: effect of N-acetylcysteine supplementation. J Appl Physiol. 1994;76:2570–2577. [PubMed] [Google Scholar]

363. Sharma R. Nakamura A. Takahashi R. Nakamoto H. Goto S. Carbonyl modification in rat liver histones: decrease with age and increase by dietary restriction. Free Radic Biol Med. 2006;40:1179–1184. [PubMed] [Google Scholar]

364. Shimazu T. Hirschey MD. Hua L. Dittenhafer-Reed KE. Schwer B. Lombard DB. Li Y. Bunkenborg J. Alt FW. Denu JM. Jacobson MP. Verdin E. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010;12:654–661. [PMC free article] [PubMed] [Google Scholar]

365. Shirato K. Kizaki T. Sakurai T. Ogasawara JE. Ishibashi Y. Iijima T. Okada C. Noguchi I. Imaizumi K. Taniguchi N. Ohno H. Hypoxia-inducible factor-1alpha suppresses the expression of macrophage scavenger receptor 1. Pflugers Arch. 2009;459:93–103. [PubMed] [Google Scholar]

366. Shringarpure R. Grune T. Mehlhase J. Davies KJ. Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem. 2003;278:311–318. [PubMed] [Google Scholar]

367. Siamilis S. Jakus J. Nyakas C. Costa A. Mihalik B. Falus A. Radak Z. The effect of exercise and oxidant-antioxidant intervention on the levels of neurotrophins and free radicals in spinal cord of rats. Spinal Cord. 2009;47:453–457. [PubMed] [Google Scholar]

368. Silver I. Erecinska M. Oxygen and ion concentrations in normoxic and hypoxic brain cells. Adv Exp Med Biol. 1998;454:7–16. [PubMed] [Google Scholar]

369. Sitte N. Merker K. von Zglinicki T. Grune T. Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts. Free Radic Biol Med. 2000;28:701–708. [PubMed] [Google Scholar]

370. Spencer T. Posterino GS. Sequential effects of GSNO and H2O2 on the Ca2+ sensitivity of the contractile apparatus of fast- and slow-twitch skeletal muscle fibers from the rat. Am J Physiol Cell Physiol. 2009;296:C1015–C1023. [PubMed] [Google Scholar]

371. Spiegelman BM. Heinrich R. Biological control through regulated transcriptional coactivators. Cell. 2004;119:157–167. [PubMed] [Google Scholar]

372. Sriram S. Subramanian S. Sathiakumar D. Venkatesh R. Salerno MS. McFarlane CD. Kambadur R. Sharma M. Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF-kappaB. Aging Cell. 2011;10:931–948. [PMC free article] [PubMed] [Google Scholar]

373. St-Pierre J. Buckingham JA. Roebuck SJ. Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem. 2002;277:44784–44790. [PubMed] [Google Scholar]

374. St-Pierre J. Drori S. Uldry M. Silvaggi JM. Rhee J. Jager S. Handschin C. Zheng K. Lin J. Yang W. Simon DK. Bachoo R. Spiegelman BM. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127:397–408. [PubMed] [Google Scholar]

375. Stadtman ER. Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci. 2001;928:22–38. [PubMed] [Google Scholar]

376. Stadtman ER. Protein oxidation and aging. Free Radic Res. 2006;40:1250–1258. [PubMed] [Google Scholar]

377. Steenken S. Jovanovic SV. How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J Am Chem Soc. 1997;119:617–618. [Google Scholar]

378. Stevnsner T. Thorslund T. de Souza-Pinto NC. Bohr VA. Mitochondrial repair of 8-oxoguanine and changes with aging. Exp Gerontol. 2002;37:1189–1196. [PubMed] [Google Scholar]

379. Stroka DM. Burkhardt T. Desbaillets I. Wenger RH. Neil DA. Bauer C. Gassmann M. Candinas D. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J. 2001;15:2445–2453. [PubMed] [Google Scholar]

380. Suliman HB. Welty-Wolf KE. Carraway M. Tatro L. Piantadosi CA. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res. 2004;64:279–288. [PubMed] [Google Scholar]

381. Sumida S. Nakamura H. Yodoi J. Thioredoxin induction of peripheral blood mononuclear cells in mice in response to a single bout of swimming exercise. Gen Physiol Biophys. 2004;23:241–249. [PubMed] [Google Scholar]

382. Sundaresan NR. Pillai VB. Wolfgeher D. Samant S. Vasudevan P. Parekh V. Raghuraman H. Cunningham JM. Gupta M. Gupta MP. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal. 2011;4:ra46. [PubMed] [Google Scholar]

383. Suwa M. Nakano H. Radak Z. Kumagai S. Short-term adenosine monophosphate-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside treatment increases the sirtuin 1 protein expression in skeletal muscle. Metabolism. 2011;60:394–403. [PubMed] [Google Scholar]

384. Sverko V. Balog T. Sobocanec S. Gavella M. Marotti T. Age-associated alteration of lipid peroxidation and superoxide dismutase activity in CBA and AKR mice. Exp Gerontol. 2002;37:1031–1039. [PubMed] [Google Scholar]

385. Syu GD. Chen HI. Jen CJ. Severe exercise and exercise training exert opposite effects on human neutrophil apoptosis via altering the redox status. PloS One. 2011;6:e24385. [PMC free article] [PubMed] [Google Scholar]

386. Szabo C. Poly(ADP-ribose) polymerase activation by reactive nitrogen species—relevance for the pathogenesis of inflammation. Nitric Oxide. 2006;14:169–179. [PubMed] [Google Scholar]

387. Szabo C. Biser A. Benko R. Bottinger E. Susztak K. Poly(ADP-ribose) polymerase inhibitors ameliorate nephropathy of type 2 diabetic Leprdb/db mice. Diabetes. 2006;55:3004–3012. [PubMed] [Google Scholar]

388. Szczesny B. Bhakat KK. Mitra S. Boldogh I. Age-dependent modulation of DNA repair enzymes by covalent modification and subcellular distribution. Mech Ageing Dev. 2004;125:755–765. [PubMed] [Google Scholar]

389. Szomor ZL. Appleyard RC. Murrell GA. Overexpression of nitric oxide synthases in tendon overuse. J Orthop Res. 2006;24:80–86. [PubMed] [Google Scholar]

390. Takemori K. Kimura T. Shirasaka N. Inoue T. Masuno K. Ito H. Food restriction improves glucose and lipid metabolism through Sirt1 expression: a study using a new rat model with obesity and severe hypertension. Life Sci. 2011;88:1088–1094. [PubMed] [Google Scholar]

391. Tang BL. Sirt1's systemic protective roles and its promise as a target in antiaging medicine. Transl Res. 2011;157:276–284. [PubMed] [Google Scholar]

392. Tantiwong P. Shanmugasundaram K. Monroy A. Ghosh S. Li M. DeFronzo RA. Cersosimo E. Sriwijitkamol A. Mohan S. Musi N. NF-kappaB activity in muscle from obese and type 2 diabetic subjects under basal and exercise-stimulated conditions. Am J Physiol Endocrinol Metab. 2010;299:E794–E801. [PMC free article] [PubMed] [Google Scholar]

393. Tao R. Coleman MC. Pennington JD. Ozden O. Park SH. Jiang H. Kim HS. Flynn CR. Hill S. Hayes McDonald W. Olivier AK. Spitz DR. Gius D. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell. 2010;40:893–904. [PMC free article] [PubMed] [Google Scholar]

394. Taylor CR. Weibel ER. Design of the mammalian respiratory system. I. Problem and strategy. Respir Physiol. 1981;44:1–10. [PubMed] [Google Scholar]

395. Taylor CT. Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J. 2008;409:19–26. [PubMed] [Google Scholar]

396. Tennen RI. Berber E. Chua KF. Functional dissection of SIRT6: identification of domains that regulate histone deacetylase activity and chromatin localization. Mech Ageing Dev. 2010;131:185–192. [PMC free article] [PubMed] [Google Scholar]

397. Thomson S. Mahadevan LC. Clayton AL. MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Semin Cell Dev Biol. 1999;10:205–214. [PubMed] [Google Scholar]

398. Tian L. Cai Q. Wei H. Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free Radic Biol Med. 1998;24:1477–1484. [PubMed] [Google Scholar]

399. Timmons JA. Knudsen S. Rankinen T. Koch LG. Sarzynski M. Jensen T. Keller P. Scheele C. Vollaard NB. Nielsen S. Akerstrom T. MacDougald OA. Jansson E. Greenhaff PL. Tarnopolsky MA. van Loon LJ. Pedersen BK. Sundberg CJ. Wahlestedt C. Britton SL. Bouchard C. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J Appl Physiol. 2010;108:1487–1496. [PMC free article] [PubMed] [Google Scholar]

400. Tobon-Velasco JC. Carmona-Aparicio L. Ali SF. Santamaria A. Biomarkers of cell damage induced by oxidative stress in Parkinson's disease and related models. Cent Nerv Syst Agents Med Chem. 2010;10:278–286. [PubMed] [Google Scholar]

401. Tolmasoff JM. Ono T. Cutler RG. Superoxide dismutase: correlation with life-span and specific metabolic rate in primate species. Proc Natl Acad Sci U S A. 1980;77:2777–2781. [PMC free article] [PubMed] [Google Scholar]

402. Tonkonogi M. Walsh B. Svensson M. Sahlin K. Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress. J Physiol. 2000;528(Pt 2):379–388. [PMC free article] [PubMed] [Google Scholar]

403. Toth-Zsamboki E. Horvath E. Vargova K. Pankotai E. Murthy K. Zsengeller Z. Barany T. Pek T. Fekete K. Kiss RG. Preda I. Lacza Z. Gero D. Szabo C. Activation of poly(ADP-ribose) polymerase by myocardial ischemia and coronary reperfusion in human circulating leukocytes. Mol Med. 2006;12:221–228. [PMC free article] [PubMed] [Google Scholar]

404. Traverse JH. Wang YL. Du R. Nelson D. Lindstrom P. Archer SL. Gong G. Bache RJ. Coronary nitric oxide production in response to exercise and endothelium-dependent agonists. Circulation. 2000;101:2526–2531. [PubMed] [Google Scholar]

405. Tremblay MS. Shephard RJ. Brawley LR. Cameron C. Craig CL. Duggan M. Esliger DW. Hearst W. Hicks A. Janssen I. Katzmarzyk PT. Latimer AE. Ginis KA. McGuire A. Paterson DH. Sharratt M. Spence JC. Timmons B. Warburton D. Young TK. Zehr L. Physical activity guidelines and guides for Canadians: facts and future. Can J Public Health. 2007;98(Suppl 2):S218–S224. [PubMed] [Google Scholar]

406. Trendelenburg AU. Meyer A. Jacobi C. Feige JN. Glass DJ. TAK-1/p38/nNFkappaB signaling inhibits myoblast differentiation by increasing levels of Activin A. Skelet Muscle. 2012;2:3. [PMC free article] [PubMed] [Google Scholar]

407. Trenerry MK. Carey KA. Ward AC. Cameron-Smith D. STAT3 signaling is activated in human skeletal muscle following acute resistance exercise. J Appl Physiol. 2007;102:1483–1489. [PubMed] [Google Scholar]

408. Trenerry MK. Carey KA. Ward AC. Farnfield MM. Cameron-Smith D. Exercise-induced activation of STAT3 signaling is increased with age. Rejuvenation Res. 2008;11:717–724. [PubMed] [Google Scholar]

409. Tweedie C. Romestaing C. Burelle Y. Safdar A. Tarnopolsky MA. Seadon S. Britton SL. Koch LG. Hepple RT. Lower oxidative DNA damage despite greater ROS production in muscles from rats selectively bred for high running capacity. Am J Physiol Regul Integr Comp Physiol. 2011;300:R544–R553. [PMC free article] [PubMed] [Google Scholar]

410. Ueda S. Masutani H. Nakamura H. Tanaka T. Ueno M. Yodoi J. Redox control of cell death. Antioxid Redox Signal. 2002;4:405–414. [PubMed] [Google Scholar]

411. Ugarte N. Petropoulos I. Friguet B. Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxid Redox Signal. 2010;13:539–549. [PubMed] [Google Scholar]

412. Vakhrusheva O. Smolka C. Gajawada P. Kostin S. Boettger T. Kubin T. Braun T. Bober E. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res. 2008;102:703–710. [PubMed] [Google Scholar]

413. van Praag H. Neurogenesis and exercise: past and future directions. Neuromol Med. 2008;10:128–140. [PubMed] [Google Scholar]

414. van Praag H. Kempermann G. Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2:266–270. [PubMed] [Google Scholar]

415. Vasilaki A. Mansouri A. Remmen H. van der Meulen JH. Larkin L. Richardson AG. McArdle A. Faulkner JA. Jackson MJ. Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity. Aging Cell. 2006;5:109–117. [PubMed] [Google Scholar]

416. Vasilaki A. McArdle F. Iwanejko LM. McArdle A. Adaptive responses of mouse skeletal muscle to contractile activity: the effect of age. Mech Ageing Dev. 2006;127:830–839. [PubMed] [Google Scholar]

417. Vassilakopoulos T. Deckman G. Kebbewar M. Rallis G. Harfouche R. Hussain SN. Regulation of nitric oxide production in limb and ventilatory muscles during chronic exercise training. Am J Physiol Lung Cell Mol Physiol. 2003;284:L452–L457. [PubMed] [Google Scholar]

418. Vella L. Caldow MK. Larsen AE. Tassoni D. Della Gatta PA. Gran P. Russell AP. Cameron-Smith D. Resistance exercise increases NF-kappaB activity in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2012;302:R667–R673. [PubMed] [Google Scholar]

419. Vezzoli M. Castellani P. Corna G. Castiglioni A. Bosurgi L. Monno A. Brunelli S. Manfredi AA. Rubartelli A. Rovere-Querini P. High-mobility group box 1 release and redox regulation accompany regeneration and remodeling of skeletal muscle. Antioxid Redox Signal. 2011;15:2161–2174. [PubMed] [Google Scholar]

420. Vider J. Laaksonen DE. Kilk A. Atalay M. Lehtmaa J. Zilmer M. Sen CK. Physical exercise induces activation of NF-kappaB in human peripheral blood lymphocytes. Antioxid Redox Signal. 2001;3:1131–1137. [PubMed] [Google Scholar]

421. Villeda SA. Luo J. Mosher KI. Zou B. Britschgi M. Bieri G. Stan TM. Fainberg N. Ding Z. Eggel A. Lucin KM. Czirr E. Park JS. Couillard-Despres S. Aigner L. Li G. Peskind ER. Kaye JA. Quinn JF. Galasko DR. Xie XS. Rando TA. Wyss-Coray T. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477:90–94. [PMC free article] [PubMed] [Google Scholar]

422. Vogt M. Puntschart A. Geiser J. Zuleger C. Billeter R. Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol. 2001;91:173–182. [PubMed] [Google Scholar]

423. Vollaard NB. Shearman JP. Cooper CE. Exercise-induced oxidative stress:myths, realities and physiological relevance. Sports Med. 2005;35:1045–1062. [PubMed] [Google Scholar]

424. Walsh B. Tonkonogi M. Sahlin K. Effect of endurance training on oxidative and antioxidative function in human permeabilized muscle fibers. Pflugers Arch. 2001;442:420–425. [PubMed] [Google Scholar]

425. Wang G. Chen HW. Oktay Y. Zhang J. Allen EL. Smith GM. Fan KC. Hong JS. French SW. McCaffery JM. Lightowlers RN. Morse HC., 3rd Koehler CM. Teitell MA. PNPASE regulates RNA import into mitochondria. Cell. 2010;142:456–467. [PMC free article] [PubMed] [Google Scholar]

426. Wang H. Hertlein E. Bakkar N. Sun H. Acharyya S. Wang J. Carathers M. Davuluri R. Guttridge DC. NF-kappaB regulation of YY1 inhibits skeletal myogenesis through transcriptional silencing of myofibrillar genes. Mol Cell Biol. 2007;27:4374–4387. [PMC free article] [PubMed] [Google Scholar]

427. Wang H. Yuan G. Prabhakar NR. Boswell M. Katz DM. Secretion of brain-derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling. J Neurochem. 2006;96:694–705. [PubMed] [Google Scholar]

428. Warner BB. Stuart L. Gebb S. Wispe JR. Redox regulation of manganese superoxide dismutase. Am J Physiol. 1996;271:L150–L158. [PubMed] [Google Scholar]

429. Wei L. Salahura G. Boncompagni S. Kasischke KA. Protasi F. Sheu SS. Dirksen RT. Mitochondrial superoxide flashes: metabolic biomarkers of skeletal muscle activity and disease. FASEB J. 2011;25:3068–3078. [PMC free article] [PubMed] [Google Scholar]

430. Wei Y. Sowers JR. Nistala R. Gong H. Uptergrove GM. Clark SE. Morris EM. Szary N. Manrique C. Stump CS. Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem. 2006;281:35137–35146. [PubMed] [Google Scholar]

431. Wenz T. Rossi SG. Rotundo RL. Spiegelman BM. Moraes CT. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A. 2009;106:20405–20410. [PMC free article] [PubMed] [Google Scholar] Retracted

432. Williamson DH. Lund P. Krebs HA. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967;103:514–527. [PMC free article] [PubMed] [Google Scholar]

433. Wisloff U. Najjar SM. Ellingsen O. Haram PM. Swoap S. Al-Share Q. Fernstrom M. Rezaei K. Lee SJ. Koch LG. Britton SL. Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science. 2005;307:418–420. [PubMed] [Google Scholar]

434. Wright DC. Han DH. Garcia-Roves PM. Geiger PC. Jones TE. Holloszy JO. Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression. J Biol Chem. 2007;282:194–199. [PubMed] [Google Scholar]

435. Wu A. Ying Z. Gomez-Pinilla F. The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci. 2004;19:1699–1707. [PubMed] [Google Scholar]

436. Wu J. Jiang Z. Liu M. Gong X. Wu S. Burns CM. Li Z. Polynucleotide phosphorylase protects Escherichia coli against oxidative stress. Biochemistry. 2009;48:2012–2020. [PMC free article] [PubMed] [Google Scholar]

437. Xia Y. Zweier JL. Substrate control of free radical generation from xanthine oxidase in the postischemic heart. J Biol Chem. 1995;270:18797–18803. [PubMed] [Google Scholar]

438. Yang HT. Prior BM. Lloyd PG. Taylor JC. Li Z. Laughlin MH. Terjung RL. Training-induced vascular adaptations to ischemic muscle. J Physiol Pharmacol. 2008;59(Suppl 7):57–70. [PMC free article] [PubMed] [Google Scholar]

439. Yang SR. Wright J. Bauter M. Seweryniak K. Kode A. Rahman I. Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol. 2007;292:L567–L576. [PubMed] [Google Scholar]

440. Yi MJ. Park SH. Cho HN. Yong Chung H. Kim JI. Cho CK. Lee SJ. Lee YS. Heat-shock protein 25 (Hspb1) regulates manganese superoxide dismutase through activation of Nfkb (NF-kappaB) Radiat Res. 2002;158:641–649. [PubMed] [Google Scholar]

441. Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008;10:179–206. [PubMed] [Google Scholar]

442. Yoshihara E. Chen Z. Matsuo Y. Masutani H. Yodoi J. Thiol redox transitions by thioredoxin and thioredoxin-binding protein-2 in cell signaling. Methods Enzymol. 2010;474:67–82. [PubMed] [Google Scholar]

443. Yu AY. Frid MG. Shimoda LA. Wiener CM. Stenmark K. Semenza GL. Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Physiol. 1998;275:L818–L826. [PubMed] [Google Scholar]

444. Zhao W. Kruse JP. Tang Y. Jung SY. Qin J. Gu W. Negative regulation of the deacetylase SIRT1 by DBC1. Nature. 2008;451:587–590. [PMC free article] [PubMed] [Google Scholar]

445. Zhong L. Mostoslavsky R. SIRT6: a master epigenetic gatekeeper of glucose metabolism. Transcription. 2010;1:17–21. [PMC free article] [PubMed] [Google Scholar]

446. Zoll J. Ponsot E. Dufour S. Doutreleau S. Ventura-Clapier R. Vogt M. Hoppeler H. Richard R. Fluck M. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J Appl Physiol. 2006;100:1258–1266. [PubMed] [Google Scholar]

447. Zuo L. Christofi FL. Wright VP. Liu CY. Merola AJ. Berliner LJ. Clanton TL. Intra- and extracellular measurement of reactive oxygen species produced during heat stress in diaphragm muscle. Am J Physiol Cell Physiol. 2000;279:C1058–C1066. [PubMed] [Google Scholar]

448. Zuo L. Pasniciuc S. Wright VP. Merola AJ. Clanton TL. Sources for superoxide release: lessons from blockade of electron transport, NADPH oxidase, and anion channels in diaphragm. Antioxid Redox Signal. 2003;5:667–675. [PubMed] [Google Scholar]


Page 2

When the systems of the body respond to a single bout of physical activity or exercise This is referred as?

Antioxidants & Redox Signaling

Redox-Inducible Transcription Factors

TNuclear factor-κB (NF-κB)
BRedox sensor, regulates genes related with inflammation, cell growth, stress responses, including oxidative stress, and apoptosis
EActivation of NF-κB binding to DNA in rat skeletal muscle in response to acute treadmill running (111, 139, 142, 162)
 NF-κB activation in human peripheral blood lymphocytes in response to acute spring and endurance exercise (76, 420)
 Acute treadmill exercise activates NF-κB in an intensity-dependent manner in human peripheral blood lymphocytes (182)
 Acute eccentric exercise induces and submaximal eccentric training decreases NF- kB activation in PBMC (101, 165)
 Acute intensive resistance exercise increases NF-κB activity in human skeletal muscle (418)
 Acute fatiguing resistance exercise decreases NF-κB binding to DNA in skeletal muscle from healthy humans and mice (87)
 NF-κB activation in response to moderate-intensity cycle exercise in muscle from nondiabetic subjects, but not in type II diabetics (392)
 Increased basal NF-κB activity in muscle from insulin-resistant and type II diabetic subjects, and in diabetic rat (197, 392)
 NF-κB activation for DNA binding by isometric contraction in muscle of adult, but not old mice (416)
 Muscle unloading increases NF-κB activity in mice (87, 150)
 NF-κB−/− mice is resistant to unloading-induced muscle atrophy (149)
 Training increases basal levels, but blunts isometric contraction-induced NF-κB activation in skeletal muscle of mice (53)
 Treadmill training increases nuclear levels of NF-κB in skeletal muscle of adult and old rats (105)

TActivator protein-1 (AP-1)
BSenses intracellular redox state and regulates the expression of multiple genes involved in stress response, growth, and differentiation
EActivation of AP-1 for DNA binding in rodent skeletal muscle in response to acute treadmill running (142)
 AP-1 activation by isometric contraction in muscle of adult, but not old, mice (416)
 Training increases AP-1 activation in mouse skeletal muscle (53)

TNuclear respiratory factors (NRFs)
BActivates expression of genes regulating cellular growth, respiration, heme biosynthesis, and mitochondrial DNA transcription and replication
ERegular physical activity increased expression of NRF1 in young, and a single exercise bout decreased its expression in sketal muscle of both young and old individuals (41)
 5-week endurance training increased NRF-1 protein levels in skeletal muscle of young Wistar rats, but not in old ones (80)
 Treadmill training increases nuclear levels of NRF-2 in skeletal muscle of adult and old rats (105)
 Correlation of VO2peak with NRF-1 mRNA levels in skeletal muscle of healthy human (102)
 One bout of 3-h swimming in Wistar rats increases NRF-1- and NRF-2-binding activity (20)
 Acute exercise did not change NRF-1 mRNA expression in leg skeletal muscle of trained or untrained human (286)
 In healthy trained male cyclist, 10-km cycling increases skeletal muscle NRF-2 mRNA levels (58)
 2 times/day, 3-h running bouts or 2-h swimming↑binding of NRF-1/2 in skeletal muscle of Wistar rats (434)
 An acute bout of exercise induced NRF-1 expression in rat muscle (245)

 Forkhead box class O transcription factors (FOXOs)
TControl apoptosis, cell cycle arrest, DNA damage repair, detoxification of ROS, cell differentiation, and glucose metabolism
BMarathon running induces PBMC FOXO3A mRNA expression (225)
 Acute exercise does not alter FOXO expression in human skeletal muscle (72)
 A single bout of 60-min cycle exercise did not alter FOXO1/3 mRNA expression in untrained healthy males (72)
 High-intensity cycling until exhaustion↑FOXO-1-2 mRNA expression in skeletal muscle of healthy sedentary humans (223)
 Exercise training increased FOXO3a protein in the heart tissue of aged rats (91)

TPeroxisome proliferator-activated receptor transcription factors (PPARs)
BRegulate the expression of genes involved in the transport, metabolism, and handling of FFAs
EA single bout of 60-min cycle exercise did not alter PPAR-α/β/γ mRNA expression in untrained healthy males (72)
 3-week training did not alter PPAR-α mRNA expression in PBMC of soccer players (299)
 High-intensity cycling until exhaustion↑PPAR-γ/δ mRNA expression in skeletal muscle of healthy sedentary humans (223)
 One bout of 2-h endurance exercise↑PPAR-β/δ mRNA in skeletal muscle of healthy humans (340)

TNuclear receptor-binding factor (NRBF)
BBinding partner to PPAR-α and other nuclear receptors
EHigh-intensity cycling until exhaustion↑NRBF-2 mRNA expression in skeletal muscle of healthy sedentary humans (223)

TEarly growth response factor 1(EGR1)
BStretch-responsive gene activation for ROS detoxification, regulation of Sirt1, inflammation, and immune response regulation
EMechanical stretch to myotubes increased EGR1 induction (275)
 Acute exercise decreased EGR-1 expression in younger and increased in older subjects (168)
 2-weeks swim training did not influence EGR-1 protein levels in the rat heart (135)

THypoxia- inducible factor 1s (HIF-1s)
BEncodes proteins that help the cellular response to low O2 increased angiogenesis, erythropoiesis, glucose uptake
EEndurance training blunts acute exercise-induced HIF-1/2-α mRNA expression in human skeletal muscle (220)
 45 min of one-legged knee-extension exercise elevated protein levels and DNA-binding activity of HIF-1α in human skeletal muscle (11)
 45 min of one-legged knee-extension exercise increased mRNA expression of HIF-1γ, but not HIF-1α (125)
 6 weeks of high-intensity bicycle training under hypoxic, but not normoxic, conditions increased HIF-1α mRNA expression in human skeletal muscle (422)
 6 weeks of endurance training under hypoxic, but not normoxic, conditions increased HIF-1α mRNA expression in human skeletal muscle of male high-level, long-distance runners (446)
 3 weeks of intermittent hypoxic training decreased HIF-1 mRNA expression in skeletal muscle, but not leukocytes, of male endurance athletes (241)
 Exercise in acute, but not in chronic, hypoxia increased HIF-1α protein levels in skeletal muscle of CD-1 mice (194)

THeat-shock factor (HSF)
BRegulates transcriptionally heat-shock protein synthesis
EHSF activation for DNA binding by isometric contraction both in adult and old mouse muscle (416)
 Endurance training induced the activation and expression of HSF-1 in the skeletal muscle in nondiabetic rats (18)
 2 days of treadmill running exercise increased myocardial HSF-1 protein and HSF-1 activation in both young and old male Fischer-344 rats (79)
 Acute intensive exercise induces HSF-1 activation in rat myocardium (214)

TTumor suppressor protein p53
BControls cell cycle arrest, muscle mitochondrial biogenesis, DNA repair, triggers senescence and apoptosis, maintains antioxidant defense, regulates its own levels
E8 weeks of endurance training decreased p53 protein in skeletal muscle of type II diabetic rats (301)
 4 weeks of endurance training decreased p53 mRNA in cardiac muscle of younger and older mice and p53 translocalization to mitochondria in older mice (300)
 p53−/− mice have higher aerobic exercise capacity (276)

TMitochondrial transcription factor A (TFAM)
BRegulates mitochondrial gene transcription, DNA replication, and antioxidant protection
EPhysical activity increased the expression of TFAM in muscle of young adults, strong correlation between VO2max and TFAM (41)
 Elite athletes have a higher level of TFAM expression than moderately trained individuals (263)
 Acute exercise increased TFAM mRNA expression in trained or untrained leg skeletal muscle of a healthy human (286)
 4 weeks, 4 days/week, 45 min/day of one-legged training increased TFAM protein levels in skeletal muscle of a healthy human (30)
 Correlation of VO2peak with TFAM mRNA expression in skeletal muscle of a healthy human (102)
 Endurance training did not influence TFAM in skeletal muscle of healthy subjects and patients with mitochondrial myopathy (4)

TSignal transducer and activator of transcription 3 (STAT3)
BRegulates antiapoptotic signaling and skeletal muscle regeneration, cardiac protection, and myocyte elongation
ESTAT3 phosphorylation and translocalization↑in human skeletal muscle after acute resistance exercise (407)
 Resistance exercise-induced STAT3 phosphorylation, increased with age (408)
 24 and 48 h after single bout of resistance exercise increased STAT3 phosphorylation in skeletal muscle of aged rat (127)
 20 days of eccentric training increase STAT-3 phosphorylation in skeletal muscle of Wistar rats (266)
 Acute sprint exercise increased STAT3 and STAT5 phosphorylation in human skeletal muscle (120)
 Acute resistance exercise-induced nuclear STAT3 phosphorylation was more prominent in skeletal muscle of old individuals compared to young adults (85)