When an electron in an atom goes from lower to higher orbit its kinetic energy and potential energy

When we turn our attention from the potential energy of charged macroscopic particles which have a definite location in space to microscopic particles like the electron, we immediately encounter a difficulty. The electron in an atom is not a fixed distance from the nucleus but is “smeared out” in space in a wave pattern over a large range of distances. Nevertheless it is still meaningful to talk about the potential energy of such an electron cloud. Consider the 1s electron illustrated by the dot-density diagram in Figure 1 of Electron Waves in the Hydrogen Atom, for example. If the electron were actually positioned at one of these dots momentarily, it would have a definite potential energy at that moment. If we now add up the potential energy for each dot and divide by the number of dots, we obtain an average potential energy, which is a good approximation to the potential energy of the electron cloud. The more dots we have, the closer such an approximation is to the exact answer.

In practice we can often decide which of two electron clouds has the higher potential energy by looking at them. In Figure 1 from the Orbitals section, for example, it is easy to see that the potential energy of an electron in a 1s orbital is lower than that of a 2s electron. An electron in a 1s orbital is almost always closer than 200 pm to the nucleus, while in a 2s orbital it is usually farther away. In the same way we have no difficulty in estimating that a 3s electron is on average farther from the nucleus and hence higher in potential energy than a 2s electron. It is also easy to see that electron clouds which differ only in their orientation in space must have the same potential energy. An example would be the 2px, 2py, and 2pz clouds.

When we compare orbitals with different basic shapes, mere inspection of the dot-density diagrams is often insufficient to tell us about the relative potential energies. It is not apparent from Figure 1 in Orbitals, for instance, whether the 2s or 2p orbital has the higher potential energy. Actually both have the same energy in a hydrogen atom, though not in other atoms. In the same way the 3s, the three 3p, and the five 3d orbitals are all found to have the same energy in the hydrogen atom.

Although dot-density diagrams are very informative about the potential energy of an electron in an orbital, they tell us nothing at all about its kinetic energy. It is impossible, for example, to decide from Figure 5.6 whether the electron in a 1s orbital is moving faster on the whole than an electron in a 2s orbital, or even whether it is moving at all! Fortunately it turns out that this difficulty is unimportant. The total energy (kinetic + potential) of an electron in an atom or a molecule is always one-half its potential energy. Thus, for example, when an electron is shifted from a 1s to a 2s orbital, its potential energy increases by 3.27 aJ. At the same time the electron slows down and its kinetic energy drops by half this quantity, namely, 1.635 aJ. The net result is that the total energy (kinetic + potential) increases by exactly half the increase in potential energy alone; i.e., it increases by 1.635 aJ. A similar statement can he made for any change inflicted on any electron in any atomic or molecular system. This result is known as the virial theorem. Because of this theorem we can, if we want, ignore the kinetic energy of an electron and concentrate exclusively on its potential energy.

I think the confusion comes from mixing up two terms: kinetic energy and energy.

Energy is a sum of kinetic energy and potential energy. Energy states, as is well-known, depend on the quantum number $n$ in ascending order: electrons farther away from the nucleus have greater energy. It is why when photons are emitted the electron transits to a closer-to-the-nucleus orbit.

But kinetic energy indeed is higher for the small-$n$ orbits. This is because they have huge negative potential energy, as they are close to the attracting nucleus, which is "compensated" by huge positive kinetic energy.

Btw, I think that the comment by @CountTo10 is incorrect as (s)he also confuses these terms (no offense!). Please correct me if I got something wrong.

When an electron in an atom goes from lower to higher orbit its kinetic energy and potential energy

When an electron in an atom goes from lower to higher orbit its kinetic energy and potential energy
When an electron in an atom goes from lower to higher orbit its kinetic energy and potential energy

Get the answer to your homework problem.

Try Numerade free for 7 days

We don’t have your requested question, but here is a suggested video that might help.

As the orbit number increases, the $\mathrm{K} . \mathrm{E}$. and $\mathrm{P} . \mathrm{E}$. for an electron: (a) both increases (b) both decreases (c) K.E. increases but P.E. decreases (d) P.E. increases but K.E. decreases

Bohr atom

Unlike planets orbiting the Sun, electrons cannot be at any arbitrary distance from the nucleus; they can exist only in certain specific locations called allowed orbits. This property, first explained by Danish physicist Niels Bohr in 1913, is another result of quantum mechanics—specifically, the requirement that the angular momentum of an electron in orbit, like everything else in the quantum world, come in discrete bundles called quanta.

In the Bohr atom electrons can be found only in allowed orbits, and these allowed orbits are at different energies. The orbits are analogous to a set of stairs in which the gravitational potential energy is different for each step and in which a ball can be found on any step but never in between.

The laws of quantum mechanics describe the process by which electrons can move from one allowed orbit, or energy level, to another. As with many processes in the quantum world, this process is impossible to visualize. An electron disappears from the orbit in which it is located and reappears in its new location without ever appearing any place in between. This process is called a quantum leap or quantum jump, and it has no analog in the macroscopic world.

Because different orbits have different energies, whenever a quantum leap occurs, the energy possessed by the electron will be different after the jump. For example, if an electron jumps from a higher to a lower energy level, the lost energy will have to go somewhere and in fact will be emitted by the atom in a bundle of electromagnetic radiation. This bundle is known as a photon, and this emission of photons with a change of energy levels is the process by which atoms emit light. See also laser.

When an electron in an atom goes from lower to higher orbit its kinetic energy and potential energy

Science: Fact or Fiction?

Do you get fired up about physics? Giddy about geology? Sort out science fact from fiction with these questions.

In the same way, if energy is added to an atom, an electron can use that energy to make a quantum leap from a lower to a higher orbit. This energy can be supplied in many ways. One common way is for the atom to absorb a photon of just the right frequency. For example, when white light is shone on an atom, it selectively absorbs those frequencies corresponding to the energy differences between allowed orbits.

Each element has a unique set of energy levels, and so the frequencies at which it absorbs and emits light act as a kind of fingerprint, identifying the particular element. This property of atoms has given rise to spectroscopy, a science devoted to identifying atoms and molecules by the kind of radiation they emit or absorb.

This picture of the atom, with electrons moving up and down between allowed orbits, accompanied by the absorption or emission of energy, contains the essential features of the Bohr atomic model, for which Bohr received the Nobel Prize for Physics in 1922. His basic model does not work well in explaining the details of the structure of atoms more complicated than hydrogen, however. This requires the introduction of quantum mechanics. In quantum mechanics each orbiting electron is represented by a mathematical expression known as a wave function—something like a vibrating guitar string laid out along the path of the electron’s orbit. These waveforms are called orbitals. See also quantum mechanics: Bohr’s theory of the atom.

In the quantum mechanical version of the Bohr atomic model, each of the allowed electron orbits is assigned a quantum number n that runs from 1 (for the orbit closest to the nucleus) to infinity (for orbits very far from the nucleus). All of the orbitals that have the same value of n make up a shell. Inside each shell there may be subshells corresponding to different rates of rotation and orientation of orbitals and the spin directions of the electrons. In general, the farther away from the nucleus a shell is, the more subshells it will have. See the table.

This arrangement of possible orbitals explains a great deal about the chemical properties of different atoms. The easiest way to see this is to imagine building up complex atoms by starting with hydrogen and adding one proton and one electron (along with the appropriate number of neutrons) at a time. In hydrogen the lowest-energy orbit—called the ground state—corresponds to the electron located in the shell closest to the nucleus. There are two possible states for an electron in this shell, corresponding to a clockwise spin and a counterclockwise spin (or, in the jargon of physicists, spin up and spin down).

The next most-complex atom is helium, which has two protons in its nucleus and two orbiting electrons. These electrons fill the two available states in the lowest shell, producing what is called a filled shell. The next atom is lithium, with three electrons. Because the closest shell is filled, the third electron goes into the next higher shell. This shell has spaces for eight electrons, so that it takes an atom with 10 electrons (neon) to fill the first two levels. The next atom after neon, sodium, has 11 electrons, so that one electron goes into the next highest shell.

periodic table showing the valence shells

In the progression thus far, three atoms—hydrogen, lithium, and sodium—have one electron in the outermost shell. As stated above, it is these outermost electrons that determine the chemical properties of an atom. Therefore, these three elements should have similar properties, as indeed they do. For this reason, they appear in the same column of the periodic table of the elements (see periodic law), and the same principle determines the position of every element in that table. The outermost shell of electrons—called the valence shell—determines the chemical behaviour of an atom, and the number of electrons in this shell depends on how many are left over after all the interior shells are filled.