What will happen if a bacterial cell is pretreated with a lysozyme solution then placed in distilled water?

Adams D.W., Errington J. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat. Rev. Microbiol. 2009;7:642–653. [PubMed] [Google Scholar]

Adams D.W., Wu L.J., Czaplewski L.G., Errington J. Multiple effects of benzamide antibiotics on FtsZ function. Mol. Microbiol. 2011;80:68–84. [PubMed] [Google Scholar]

Allan E.J. Induction and cultivation of a stable L-form of Bacillus subtilis. J. Appl. Bacteriol. 1991;70:339–343. [PubMed] [Google Scholar]

Allan E.J., Hoischen C., Gumpert J. Bacterial L-forms. Adv. Appl. Microbiol. 2009;68:1–39. [PubMed] [Google Scholar]

Cho H., Uehara T., Bernhardt T.G. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell. 2014;159:1300–1311. [PMC free article] [PubMed] [Google Scholar]

Cho H., Wivagg C.N., Kapoor M., Barry Z., Rohs P.D., Suh H., Marto J.A., Garner E.C., Bernhardt T.G. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat. Microbiol. 2016;1:16172. [PMC free article] [PubMed] [Google Scholar]

Clasener H. Pathogenicity of the L-phase of bacteria. Annu. Rev. Microbiol. 1972;26:55–84. [PubMed] [Google Scholar]

Domingue G.J. Demystifying pleomorphic forms in persistence and expression of disease: Are they bacteria, and is peptidoglycan the solution? Discov. Med. 2010;10:234–246. [PubMed] [Google Scholar]

Domingue G.J., Sr., Woody H.B. Bacterial persistence and expression of disease. Clin. Microbiol. Rev. 1997;10:320–344. [PMC free article] [PubMed] [Google Scholar]

Domínguez-Cuevas P., Mercier R., Leaver M., Kawai Y., Errington J. The rod to L-form transition of Bacillus subtilis is limited by a requirement for the protoplast to escape from the cell wall sacculus. Mol. Microbiol. 2012;83:52–66. [PubMed] [Google Scholar]

Dörr T., Davis B.M., Waldor M.K. Endopeptidase-mediated beta lactam tolerance. PLoS Pathog. 2015;11:e1004850. [PMC free article] [PubMed] [Google Scholar]

Dwyer D.J., Collins J.J., Walker G.C. Unraveling the physiological complexities of antibiotic lethality. Annu. Rev. Pharmacol. Toxicol. 2015;55:313–332. [PubMed] [Google Scholar]

Dziarski R., Gupta D. How innate immunity proteins kill bacteria and why they are not prone to resistance. Curr. Genet. 2017 [PMC free article] [PubMed] [Google Scholar]

Emami K., Guyet A., Kawai Y., Devi J., Wu L.J., Allenby N., Daniel R.A., Errington J. RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nat. Microbiol. 2017;2:16253. [PMC free article] [PubMed] [Google Scholar]

Errington J., Mickiewicz K., Kawai Y., Wu L.J. L-form bacteria, chronic diseases and the origins of life. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016;371:20150494. [PMC free article] [PubMed] [Google Scholar]

Ferguson C.M., Booth N.A., Allan E.J. An ELISA for the detection of Bacillus subtilis L-form bacteria confirms their symbiosis in strawberry. Lett. Appl. Microbiol. 2000;31:390–394. [PubMed] [Google Scholar]

Fisher R.A., Gollan B., Helaine S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 2017;15:453–464. [PubMed] [Google Scholar]

Fleming A. On a remarkable bacteriolytic element found in tissues and secretions. Proc. R. Soc. Lond. B Biol. Sci. 1922;93:306–317. [Google Scholar]

Fleming A. On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzæ Br. J. Exp. Pathol. 1929;10:226–236. [PubMed] [Google Scholar]

Foti J.J., Devadoss B., Winkler J.A., Collins J.J., Walker G.C. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science. 2012;336:315–319. [PMC free article] [PubMed] [Google Scholar]

Han J., He L., Shi W., Xu X., Wang S., Zhang S., Zhang Y. Glycerol uptake is important for L-form formation and persistence in Staphylococcus aureus. PLoS ONE. 2014;9:e108325. [PMC free article] [PubMed] [Google Scholar]

Harms A., Maisonneuve E., Gerdes K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science. 2016;354:aaf4268. [PubMed] [Google Scholar]

Hashimoto M., Ooiwa S., Sekiguchi J. Synthetic lethality of the lytE cwlO genotype in Bacillus subtilis is caused by lack of D,L-endopeptidase activity at the lateral cell wall. J. Bacteriol. 2012;194:796–803. [PMC free article] [PubMed] [Google Scholar]

Höltje J.V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 1998;62:181–203. [PMC free article] [PubMed] [Google Scholar]

Kawai Y., Marles-Wright J., Cleverley R.M., Emmins R., Ishikawa S., Kuwano M., Heinz N., Bui N.K., Hoyland C.N., Ogasawara N. A widespread family of bacterial cell wall assembly proteins. EMBO J. 2011;30:4931–4941. [PMC free article] [PubMed] [Google Scholar]

Kawai Y., Mercier R., Errington J. Bacterial cell morphogenesis does not require a preexisting template structure. Curr. Biol. 2014;24:863–867. [PMC free article] [PubMed] [Google Scholar]

Kawai Y., Mercier R., Wu L.J., Domínguez-Cuevas P., Oshima T., Errington J. Cell growth of wall-free L-form bacteria is limited by oxidative damage. Curr. Biol. 2015;25:1613–1618. [PMC free article] [PubMed] [Google Scholar]

Klieneberger E. The natural occurrence of pleuropneumonia-like organisms in apparent symbiosis with Streptobacillus moniliformis and other bacteria. J. Pathol. Bacteriol. 1935;40:93–105. [Google Scholar]

Kohanski M.A., Dwyer D.J., Hayete B., Lawrence C.A., Collins J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797–810. [PubMed] [Google Scholar]

Kreiswirth B.N., Löfdahl S., Betley M.J., O’Reilly M., Schlievert P.M., Bergdoll M.S., Novick R.P. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature. 1983;305:709–712. [PubMed] [Google Scholar]

Leaver M., Domínguez-Cuevas P., Coxhead J.M., Daniel R.A., Errington J. Life without a wall or division machine in Bacillus subtilis. Nature. 2009;457:849–853. [PubMed] [Google Scholar]

Lovering A.L., Safadi S.S., Strynadka N.C. Structural perspective of peptidoglycan biosynthesis and assembly. Annu. Rev. Biochem. 2012;81:451–478. [PubMed] [Google Scholar]

Maiques E., Ubeda C., Campoy S., Salvador N., Lasa I., Novick R.P., Barbé J., Penadés J.R. β-lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus. J. Bacteriol. 2006;188:2726–2729. [PMC free article] [PubMed] [Google Scholar]

Mak P., Zdybicka-Barabas A., Cytryńska M. A different repertoire of Galleria mellonella antimicrobial peptides in larvae challenged with bacteria and fungi. Dev. Comp. Immunol. 2010;34:1129–1136. [PubMed] [Google Scholar]

Meeske A.J., Riley E.P., Robins W.P., Uehara T., Mekalanos J.J., Kahne D., Walker S., Kruse A.C., Bernhardt T.G., Rudner D.Z. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature. 2016;537:634–638. [PMC free article] [PubMed] [Google Scholar]

Mercier R., Kawai Y., Errington J. Excess membrane synthesis drives a primitive mode of cell proliferation. Cell. 2013;152:997–1007. [PubMed] [Google Scholar]

Mercier R., Kawai Y., Errington J. General principles for the formation and proliferation of a wall-free (L-form) state in bacteria. eLife. 2014;3:e04629. [PMC free article] [PubMed] [Google Scholar]

Onwuamaegbu M.E., Belcher R.A., Soare C. Cell wall-deficient bacteria as a cause of infections: a review of the clinical significance. J. Int. Med. Res. 2005;33:1–20. [PubMed] [Google Scholar]

Ragland S.A., Criss A.K. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog. 2017;13:e1006512. [PMC free article] [PubMed] [Google Scholar]

Rodríguez-Tébar A., Rojo F., Vázquez D. Interaction of beta-lactam antibiotics with penicillin-binding proteins from Bacillus megaterium. Eur. J. Biochem. 1982;126:161–166. [PubMed] [Google Scholar]

Sassine J., Xu M., Sidiq K.R., Emmins R., Errington J., Daniel R.A. Functional redundancy of division specific penicillin-binding proteins in Bacillus subtilis. Mol. Microbiol. 2017;106:304–318. [PMC free article] [PubMed] [Google Scholar]

Steele V.R., Bottomley A.L., Garcia-Lara J., Kasturiarachchi J., Foster S.J. Multiple essential roles for EzrA in cell division of Staphylococcus aureus. Mol. Microbiol. 2011;80:542–555. [PubMed] [Google Scholar]

Thornewell S.J., East A.K., Errington J. An efficient expression and secretion system based on Bacillus subtilis phage phi 105 and its use for the production of B. cereus β-lactamase I. Gene. 1993;133:47–53. [PubMed] [Google Scholar]

Tsai C.J., Loh J.M., Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence. 2016;7:214–229. [PMC free article] [PubMed] [Google Scholar]

Typas A., Banzhaf M., Gross C.A., Vollmer W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 2011;10:123–136. [PMC free article] [PubMed] [Google Scholar]

Vagner V., Dervyn E., Ehrlich S.D. A vector for systematic gene inactivation in Bacillus subtilis. Microbiology. 1998;144:3097–3104. [PubMed] [Google Scholar]

van Heijenoort Y., Leduc M., Singer H., van Heijenoort J. Effects of moenomycin on Escherichia coli. J. Gen. Microbiol. 1987;133:667–674. [PubMed] [Google Scholar]

Westers H., Dorenbos R., van Dijl J.M., Kabel J., Flanagan T., Devine K.M., Jude F., Séror S.J., Beekman A.C., Darmon E. Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol. Biol. Evol. 2003;20:2076–2090. [PubMed] [Google Scholar]

Wu J.A., Kusuma C., Mond J.J., Kokai-Kun J.F. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob. Agents Chemother. 2003;47:3407–3414. [PMC free article] [PubMed] [Google Scholar]


Page 2

What will happen if a bacterial cell is pretreated with a lysozyme solution then placed in distilled water?

PenG Prevents the L-Form Switch from the Walled State

(A) Schematic representation of peptidoglycan (PG) synthesis in B. subtilis and its inhibition by antibiotics. The PG wall is built from long glycan strands composed of N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) crosslinked to each other by short peptide bridges. The precursor for PG is initially synthesized in the cytoplasm by the action of MurAA, MurAB, MurC, MurD, MurE, and MurF enzymes. MurNAc-pentapeptide is coupled to a membrane carrier, undecaprenyl pyrophosphate, by MraY, and GlcNAc is added by MurG to form lipid II, which is then transferred to the outside of the cytoplasmic membrane. Newly synthesized PG is incorporated into the existing PG meshwork by a combination of transglycosylation and transpeptidation reactions catalyzed by penicillin-binding proteins (PBPs) and RodA. The antibiotics fosfomycin and D-cycloserine inhibits MurA and Ddl, respectively. The β-lactam antibiotics including penicillins (e.g., penicillin G) and cephalosporins (e.g., cephalexin) target the PBPs.

(B–D) Effects of antibiotics on L-form switch. (B) B. subtilis strains wild-type (168CA) and ispA mutant (RM81) were grown on NA/MSM plates with or without 200 μg/mL D-cycloserine (DCS) (with 1 μg/mL of FtsZ inhibitor 8j to prevent the rare reversion to walled cells) or 200 μg/mL penicillin G (PenG) at 30°C for 2–3 days. (C) PC micrographs of ispA mutant cells with or without DCS taken from the cultures shown in (B). (D) B. subtilis L-form strain (LR2; Pxyl-murE ispA−) was grown on NA/MSM plates with or without PenG in the absence of xylose.

(E–G) Effects of PenG on L-form emergence from the parental walled cells in LR2 (Pxyl-murE ispA−; E and F) and RM81 (ispA−murE+; G). Individual frames are extracted from example movies of time-lapse experiments (see also Movies S1 and S2). Numbers in the bottom right corner of each frame represent time (min) elapsed in the movies. Examples of L-form emergence are shown by blue arrows.

See also Figures S1 and S2.