What is the semi vertical angle of a right circular cone of maximum volume and given slant height?

Concept:

To find maxima and minima of a function y = f(x), follow these steps.

Step 1

\(Find\;\frac{{dy}}{{dx}},\;and\;put\frac{{dy}}{{dx}} = 0.\)

Find the value of x and this value is said to be the stationary point, this is a necessary condition to find the extremum value of a function.

Step 2

\(Find\;\frac{{{d^2}y}}{{d{x^2}}}\;\)

Check the value at the stationary point obtained in Step 1.

A function f(x) has a maxima at x = a if f’(a) = 0 and f”(a) < 0

A function f(x) has a minima at x = a if f’(a) = 0 and f”(a) > 0

A function f(x) has no maxima and minima at x = a if f’(a) = 0 and f”(a) = 0.

Calculation:

What is the semi vertical angle of a right circular cone of maximum volume and given slant height?

In the above diagram

θ = semi-vertical angle, h = height, l = slant height, r = radius of the circular base

The volume of the right circular cone is given by -

\(V = \frac{1}{3}\;\pi {r^2}h\)

In ΔABC

r = l × sin θ and h = l × cos θ 

\(∴ V = \frac{1}{3}\;\pi \;{\left( {lsin\;\theta } \right)^2}\left( {lcos\;\theta } \right) \Rightarrow \frac{1}{3}\;\pi {l^3}{\sin ^2}\theta \cos \theta \)

Step 1:

\(\frac{{dV}}{{d\theta }} = 0\)

\(\left( {\frac{1}{3}\;\pi {l^3}{{\sin }^2}\theta } \right)\left( { - \sin \theta } \right) + \left( {\frac{1}{3}\;\pi {l^3}\cos \theta } \right)\left( {2\sin \theta \cos \theta } \right) = 0\)

\(\left( {\frac{1}{3}\;\pi {l^3}} \right)\left( { - si{n^3}\theta + 2\sin \theta {{\cos }^2}\theta } \right) = 0\)

\( - \sin \theta \left( {{{\sin }^2}\theta - 2{{\cos }^2}\theta } \right) = 0\)

If sin θ = 0

⇒ θ = 0° which is not possible

∴ sin2 θ – 2cos2 θ = 0

\(\frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} = 2 \ldots \ldots \left( i \right)\)

tan2 θ = 2

\(\tan \theta = \sqrt 2 \)

\(\theta = {\tan ^{ - 1}}\sqrt 2 \)

Step 2:

\(\frac{{{d^2}V}}{{d{\theta ^2}}} = 0\)

\(\frac{{dV}}{{d\theta }} = \left( {\frac{1}{3}\;\pi {l^3}} \right)\left( { - si{n^3}\theta + 2\sin \theta {{\cos }^2}\theta } \right)\)

\(\frac{1}{3}\;\pi {l^3}\left( { - 3{{\sin }^2}\theta \cos \theta + 2\sin \theta \cdot 2\cos \theta \left( { - \sin \theta } \right) + 2{{\cos }^2}\theta \cdot \cos \theta } \right) = 0\)

\(\left( { - 3{{\sin }^2}\theta \cos \theta + 2\sin \theta \cdot 2\cos \theta \left( { - \sin \theta } \right) + 2{{\cos }^2}\theta \cdot \cos \theta } \right) = 0\)

\( - 3{\sin ^2}\theta \cos \theta - 4{\sin ^2}\theta \cos \theta + 2{\cos ^3}\theta = 0\)

\(Using\;\frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} = 2\)

\(( (- 3 )\times (2{\cos ^2}\theta \cos \theta)) - ((4) \times (2{\cos ^2}\theta \cos \theta)) + 2{\cos ^3}\theta = 0\)

\( - 6{\cos ^3}\theta - 8{\cos ^3}\theta + 2{\cos ^3}\theta = 0\)

\( - 12{\cos ^3}\theta \)

Semi-vertical angle θ is less than 90° i.e it lies in 1st quadrant.

cos θ is positive in 1st quadrant

\(∴ \frac{{{d^2}V}}{{d{\theta ^2}}} < 0\)

∴ The volume will be maximum when \({\bf{\theta }} = {\tan ^{ - 1}}\sqrt 2 \)

Open in App

What is the semi vertical angle of a right circular cone of maximum volume and given slant height?

With usual notation, given that total surface area S=πrl+πr2
S=πrr2+h2+πr2 (l=r2+h2)
Sπrr=r2+h2S2π2r22Sπ=h2h=S2π2r22Sπ (S2π2r2>2Sπ) (i)
and volume V=13πr2h=13πr2(S2π2r22Sπ)
V=r3S22Sπr2,r2<S2π i.e., 0<r<S2π
Since, V is maximum, then V2 is maximum
Now, V2=S2r292Sπr49,0<r<S2π
ddr(V2)=2rS298Sπr39
and ddr2(V2)=2S2924Sπr29
For maxima put dVdr=0
2rS298Sπr39=0r2=S4πd2(V2)dr2<0for r=S4π
From Eq. (i) h=S2π2r22Sπ=S2(4π)π2S2Sπ=2Sπ
If θ is semi-vertical angle of the cone when the volume is maximum, then in right triangle AOC,

sinθ=rr2+h2=S4πS4π+2Sπ=11+8i.e.,θ=sin1(13)


Suggest Corrections

0