What happens when you add heat to a substance?

Most of us use the word ‘heat’ to mean something that feels warm, but science defines heat as the flow of energy from a warm object to a cooler object.

Actually, heat energy is all around us – in volcanoes, in icebergs and in your body. All matter contains heat energy.

Heat energy is the result of the movement of tiny particles called atoms, molecules or ions in solids, liquids and gases. Heat energy can be transferred from one object to another. The transfer or flow due to the difference in temperature between the two objects is called heat.

For example, an ice cube has heat energy and so does a glass of lemonade. If you put the ice in the lemonade, the lemonade (which is warmer) will transfer some of its heat energy to the ice. In other words, it will heat up the ice. Eventually, the ice will melt and the lemonade and water from the ice will be the same temperature. This is known as reaching a state of thermal equilibrium.

Moving particles

Matter is all around you. It is everything in the universe – anything that has both mass and volume and takes up space is matter. Matter exists in different physical forms – solids, liquids and gases.

All matter is made of tiny particles called atoms, molecules and ions. These tiny particles are always in motion – either bumping into each other or vibrating back and forth. It is the motion of particles that creates a form of energy called heat (or thermal) energy that is present in all matter.

The particles in solids are tightly packed and can only vibrate. The particles in liquids also vibrate but are able to move around by rolling over each other and sliding around. In gases, the particles move freely with rapid, random motion.

Transferring heat energy – particles in collision

At higher temperatures, particles have more energy. Some of this energy can be transmitted to other particles that are at a lower temperature. For example, in the gas state, when a fast moving particle collides with a slower moving particle, it transfers some of its energy to the slower moving particle, increasing the speed of that particle.

With billions of moving particles colliding into each other, an area of high energy will slowly transfer across the material until thermal equilibrium is reached (the temperature is the same across the material).

Changing states by heat transfer

Faster moving particles ‘excite’ nearby particles. If heated sufficiently, the movement of particles in a solid increases and overcomes the bonds that hold the particles together. The substance changes its state from a solid to a liquid (melting). If the movement of the particles increases further in the liquid, then a stage is reached where the substance changes into a gas (evaporation).

Three ways of transferring heat energy

All heat energy, including heat generated by fire, is transferred in different ways:

Convection transfers heat energy through gases and liquids. As air is heated, the particles gain heat energy allowing them to move faster and further apart, carrying the heat energy with them. Warm air is less dense than cold air and will rise. Cooler air moves in below to replace the air that has risen. It heats up, rises, and is again replaced by cooler air, creating a circular flow called a convection current. These currents circle and heat the room.

Conduction transfers heat energy in solids. The moving particles of a warm soild material can increase the heat energy of the particles in a cooler solid material by transferring it directly from one particle to the next. Since particles are closer together, solids conduct heat better than liquids or gases.

Radiation is a method of heat transfer that does not require particles to carry the heat energy. Instead, heat is transferred in infrared waves (part of the electromagnetic spectrum). Heat waves radiate out from hot objects in all directions, travelling at the speed of light, until they hit another object. When this happens, the heat energy carried by the waves can be either absorbed or reflected.

Fire illustrates the three different methods of heat transfer. For example, the firebox will heat up due to convection. The air above the fire will be warm due to convection. You can warm your hands near to the flames due to radiant heat transfer.

An effect of heat – expansion

When gases, liquids and solids are heated, they expand. As they cool, they contract or get smaller. The expansion of the gases and liquids is because the particles are moving around very fast when they are heated and are able to move further apart so they take up more room. If the gas or liquid is heated in a closed container, the particles collide with the sides of the container, and this causes pressure. The greater the number of collisions, the greater the pressure.

Sometimes when a house is on fire, the windows will explode outwards. This is because the air in the house has been heated and the excited molecules are moving at high speed around the room. They are pushing against the walls, ceiling, floor and windows. Because the windows are the weakest part of the house structure, they break and burst open, releasing the increased pressure.

  • What happens when you add heat to a substance?
    Access through your institution

What happens when you add heat to a substance?

The Nuclear Research Foundation School Certificate Integrated, Volume 1

What happens when you add heat to a substance?

https://doi.org/10.1016/B978-0-08-012152-9.50022-1Get rights and content

Back Energy Mechanics Physics Contents Index Home

What happens when you add heat to a substance?
A melting ice cube on a plate.

Knowing the difference between heat and temperature is important. It can lead to a clearer understanding of energy. Above is a picture of an ice cube melting in a small dish. The ice, water, dish, and are experience  heat exchanges and temperature changes. In this section we will define both heat and temperature and hopefully reach an understanding of how they are related, but not identical ideas.

This page covers some introductions about heat and temperature. Directly below, and at the end of this page, are some links to further material:

Motion of Gas Molecules, Heat, and Temperature

Changes of Phase, Heat, and Temperature

Heat is not temperature.

Often the concepts of heat and temperature are thought to be the same, but they are not.

Heat ≠ Temperature

Perhaps the reason the two are usually and incorrectly thought to be the same is because as human beings on Earth our everyday experience leads us to notice that when you add heat to something, say like putting a pot of water on the stove, then the temperature of that something goes up. More heat, more temperature - they must be the same, right? Turns out, though, this is not true.

Initial Definitions

Temperature is a number. That number is related to energy, but it is not energy itself.

Temperature is a number that is related to the average kinetic energy of the molecules of a substance.

Read that last sentence carefully. It does not say that temperature is kinetic energy, nor does it state exactly what is the relation between temperature and kinetic energy.

Here is the relation: If temperature is measured in Kelvin degrees, then the value of temperature is directly proportional to the average kinetic energy of the molecules of a substance. Note that temperature is not energy, it is a number proportional to a type of energy.

Heat, on the other hand, is actual energy measured in Joules or other energy units. Heat is a measurement of some of the energy in a substance. When you add heat to a substance, you are adding energy to the substance. This added heat (energy) is usually expressed as an increase in the kinetic energies of the molecules of the substance. If the heat (energy) is used to change the state of the substance, say by melting it, then the added energy is used to break the bonds between the molecules rather than changing their kinetic energy.

Again, About Temperature

So, temperature is not energy. It is, though, a number that relates to a type of energy possessed by the molecules of a substance. Temperature directly relates to the kinetic energy of the molecules.

Temperature can be measured in a variety of units.

If you measure it in degrees Kelvin, then the temperature value is directly proportional to the average kinetic energy of the molecules in the substance.

Notice we did not say that temperature is the kinetic energy. We said it is a number, if in degrees Kelvin, that is proportional to the average kinetic energy of the molecules of a substance. That means if you double the Kelvin temperature of a substance, you double the average kinetic energy of its molecules.

When the average kinetic energy of the molecules goes up (a rise in temperature), the average speed of the molecules increases.  And lower average kinetic energy of the molecules means they have lower speed. However, a change in average kinetic energy is not directly proportional to a change in average speed.

More About Heat

Heat is energy. When you add heat to a substance, you are adding energy.

When heat (energy) goes into a substance one of two things can happen:

1. The substance can experience a rise in temperature. The heat (the added energy) can be realized as an increase in the average kinetic energy of the molecules. The molecules now, on average, have more kinetic energy. This increase in average kinetic energy is registered as a number called temperature that changes proportionally with it. Note that this increase in the average kinetic energy of the molecules means that they will now, on average, be traveling faster than before the heat arrived.

2. The substance can change state (or phase). For example, if the substance is ice, it can melt into water. Perhaps surprisingly, this change does not cause a rise in temperature. At the exact moment before melting, the average kinetic energy of the ice molecules is the same as the average kinetic energy of the water molecules at the exact moment after melting. That is, the melting ice and the just melted water are at the same temperature. Although heat (energy) is absorbed by this change of state, the absorbed energy is not used to change the average kinetic energy of the molecules, and thus proportionally change the temperature. The energy is used to change the bonding between the molecules. Changing the manner in which the molecules bond to one another can require an absorption of energy (heat) as in the case of melting, or require a release of energy (heat) as in the case of freezing.

So, when heat comes into a substance, energy comes into a substance. That energy can be used to increase the kinetic energy of the molecules, which means an increase in their temperature which means an increase in their speed. Or at certain temperatures the added heat could be used to break the bonds between the molecules causing a change in state that is not accompanied by a change in temperature.

Animations and Further Explanations:

Motion of Gas Molecules, Heat, and Temperature

Changes of Phase, Heat, and Temperature

Back Energy Mechanics Physics Contents Index Home