What happens when a ray of light strikes the interface between two median perpendicular to it

By the end of this section, you will be able to:

  • Determine the index of refraction, given the speed of light in a medium.

It is easy to notice some odd things when looking into a fish tank. For example, you may see the same fish appearing to be in two different places. (See Figure 1.) This is because light coming from the fish to us changes direction when it leaves the tank, and in this case, it can travel two different paths to get to our eyes. The changing of a light ray’s direction (loosely called bending) when it passes through variations in matter is called refraction. Refraction is responsible for a tremendous range of optical phenomena, from the action of lenses to voice transmission through optical fibers.

The changing of a light ray’s direction (loosely called bending) when it passes through variations in matter is called refraction.

The speed of light c not only affects refraction, it is one of the central concepts of Einstein’s theory of relativity. As the accuracy of the measurements of the speed of light were improved, c was found not to depend on the velocity of the source or the observer. However, the speed of light does vary in a precise manner with the material it traverses. These facts have far-reaching implications, as we will see in the chapter Special Relativity. It makes connections between space and time and alters our expectations that all observers measure the same time for the same event, for example. The speed of light is so important that its value in a vacuum is one of the most fundamental constants in nature as well as being one of the four fundamental SI units.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 1. Looking at the fish tank as shown, we can see the same fish in two different locations, because light changes directions when it passes from water to air. In this case, the light can reach the observer by two different paths, and so the fish seems to be in two different places. This bending of light is called refraction and is responsible for many optical phenomena.

Why does light change direction when passing from one material (medium) to another? It is because light changes speed when going from one material to another. So before we study the law of refraction, it is useful to discuss the speed of light and how it varies in different media. Early attempts to measure the speed of light, such as those made by Galileo, determined that light moved extremely fast, perhaps instantaneously. The first real evidence that light traveled at a finite speed came from the Danish astronomer Ole Roemer in the late 17th century. Roemer had noted that the average orbital period of one of Jupiter’s moons, as measured from Earth, varied depending on whether Earth was moving toward or away from Jupiter. He correctly concluded that the apparent change in period was due to the change in distance between Earth and Jupiter and the time it took light to travel this distance. From his 1676 data, a value of the speed of light was calculated to be 2.26 × 108 m/s (only 25% different from today’s accepted value). In more recent times, physicists have measured the speed of light in numerous ways and with increasing accuracy. One particularly direct method, used in 1887 by the American physicist Albert Michelson (1852–1931), is illustrated in Figure 2. Light reflected from a rotating set of mirrors was reflected from a stationary mirror 35 km away and returned to the rotating mirrors. The time for the light to travel can be determined by how fast the mirrors must rotate for the light to be returned to the observer’s eye.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 2. A schematic of early apparatus used by Michelson and others to determine the speed of light. As the mirrors rotate, the reflected ray is only briefly directed at the stationary mirror. The returning ray will be reflected into the observer's eye only if the next mirror has rotated into the correct position just as the ray returns. By measuring the correct rotation rate, the time for the round trip can be measured and the speed of light calculated. Michelson’s calculated value of the speed of light was only 0.04% different from the value used today.

The speed of light is now known to great precision. In fact, the speed of light in a vacuum c is so important that it is accepted as one of the basic physical quantities and has the fixed value c = 2.9972458 × 108 m/s ≈ 3.00 × 108 m/s, where the approximate value of 3.00 × 108 m/s is used whenever three-digit accuracy is sufficient. The speed of light through matter is less than it is in a vacuum, because light interacts with atoms in a material. The speed of light depends strongly on the type of material, since its interaction with different atoms, crystal lattices, and other substructures varies. We define the index of refraction n of a material to be

n=cvn=\frac{c}{v}\\n=vc

, where v is the observed speed of light in the material. Since the speed of light is always less than c in matter and equals c only in a vacuum, the index of refraction is always greater than or equal to one.

c = 2.9972458 × 108 m/s ≈ 3.00 × 108 m/s

n=cv\displaystyle{n}=\frac{c}{v}\\n=vc

That is, n ≥ 1. Table 1 gives the indices of refraction for some representative substances. The values are listed for a particular wavelength of light, because they vary slightly with wavelength. (This can have important effects, such as colors produced by a prism.) Note that for gases, n is close to 1.0. This seems reasonable, since atoms in gases are widely separated and light travels at c in the vacuum between atoms. It is common to take n = 1 for gases unless great precision is needed. Although the speed of light v in a medium varies considerably from its value c in a vacuum, it is still a large speed.
Table 1. Index of Refraction in Various Media
Medium n
Gases at 0ºC, 1 atm
Air 1.000293
Carbon dioxide 1.00045
Hydrogen 1.000139
Oxygen 1.000271
Liquids at 20ºC
Benzene 1.501
Carbon disulfide 1.628
Carbon tetrachloride 1.461
Ethanol 1.361
Glycerine 1.473
Water, fresh 1.333
Solids at 20ºC
Diamond 2.419
Fluorite 1.434
Glass, crown 1.52
Glass, flint 1.66
Ice at 20ºC 1.309
Polystyrene 1.49
Plexiglas 1.51
Quartz, crystalline 1.544
Quartz, fused 1.458
Sodium chloride 1.544
Zircon 1.923

Calculate the speed of light in zircon, a material used in jewelry to imitate diamond. The speed of light in a material, v, can be calculated from the index of refraction n of the material using the equation

n=cvn=\frac{c}{v}\\n=vc

. The equation for index of refraction states that

n=cvn=\frac{c}{v}\\n=vc

. Rearranging this to determine v gives 

v=cnv=\frac{c}{n}\\v=nc

.

The index of refraction for zircon is given as 1.923 in Table 1, and c is given in the equation for speed of light. Entering these values in the last expression gives

v=3.00×108 m/s1.923 =1.56×108 m/s\begin{array}{lll}v&=&\frac{3.00\times10^8\text{ m/s}}{1.923}\\\text{ }&=&1.56\times10^8\text{ m/s}\end{array}\\v ==1.9233.00×108 m/s1.56×108 m/s

Discussion

This speed is slightly larger than half the speed of light in a vacuum and is still high compared with speeds we normally experience. The only substance listed in Table 1 that has a greater index of refraction than zircon is diamond. We shall see later that the large index of refraction for zircon makes it sparkle more than glass, but less than diamond.

Figure 3 shows how a ray of light changes direction when it passes from one medium to another. As before, the angles are measured relative to a perpendicular to the surface at the point where the light ray crosses it. (Some of the incident light will be reflected from the surface, but for now we will concentrate on the light that is transmitted.) The change in direction of the light ray depends on how the speed of light changes. The change in the speed of light is related to the indices of refraction of the media involved. In the situations shown in Figure 3, medium 2 has a greater index of refraction than medium 1. This means that the speed of light is less in medium 2 than in medium 1. Note that as shown in Figure 3a, the direction of the ray moves closer to the perpendicular when it slows down. Conversely, as shown in Figure 3b, the direction of the ray moves away from the perpendicular when it speeds up. The path is exactly reversible. In both cases, you can imagine what happens by thinking about pushing a lawn mower from a footpath onto grass, and vice versa. Going from the footpath to grass, the front wheels are slowed and pulled to the side as shown. This is the same change in direction as for light when it goes from a fast medium to a slow one. When going from the grass to the footpath, the front wheels can move faster and the mower changes direction as shown. This, too, is the same change in direction as for light going from slow to fast.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 3. The change in direction of a light ray depends on how the speed of light changes when it crosses from one medium to another. The speed of light is greater in medium 1 than in medium 2 in the situations shown here. (a) A ray of light moves closer to the perpendicular when it slows down. This is analogous to what happens when a lawn mower goes from a footpath to grass. (b) A ray of light moves away from the perpendicular when it speeds up. This is analogous to what happens when a lawn mower goes from grass to footpath. The paths are exactly reversible.

The amount that a light ray changes its direction depends both on the incident angle and the amount that the speed changes. For a ray at a given incident angle, a large change in speed causes a large change in direction, and thus a large change in angle. The exact mathematical relationship is the law of refraction, or “Snell’s Law,” which is stated in equation form as n1 sinθ1 = n2 sinθ2.

Here n1 and n2 are the indices of refraction for medium 1 and 2, and θ1 and θ2 are the angles between the rays and the perpendicular in medium 1 and 2, as shown in Figure 3. The incoming ray is called the incident ray and the outgoing ray the refracted ray, and the associated angles the incident angle and the refracted angle. The law of refraction is also called Snell’s law after the Dutch mathematician Willebrord Snell (1591–1626), who discovered it in 1621. Snell’s experiments showed that the law of refraction was obeyed and that a characteristic index of refraction n could be assigned to a given medium. Snell was not aware that the speed of light varied in different media, but through experiments he was able to determine indices of refraction from the way light rays changed direction.

A classic observation of refraction occurs when a pencil is placed in a glass half filled with water. Do this and observe the shape of the pencil when you look at the pencil sideways, that is, through air, glass, water. Explain your observations. Draw ray diagrams for the situation.

Find the index of refraction for medium 2 in Figure 3a, assuming medium 1 is air and given the incident angle is 30.0º and the angle of refraction is 22.0º. The index of refraction for air is taken to be 1 in most cases (and up to four significant figures, it is 1.000). Thus n1=1.00 here. From the given information, θ1 = 30.0º and θ2 = 22.0º. With this information, the only unknown in Snell’s law is n2, so that it can be used to find this unknown. Snell’s law is n1 sinθ1 = n2 sinθ2.

Rearranging to isolate n2 gives

n2=n1sin⁡θ1sin⁡θ2\displaystyle{n}_2=n_1\frac{\sin\theta_1}{\sin\theta_2}\\n2=n1sinθ2sinθ1

Entering known values,

n2=1.00sin⁡30.0∘sin⁡22.0∘=0.5000.375 =1.33\begin{array}{lll}{n}_2&=&1.00\frac{\sin30.0^{\circ}}{\sin22.0^{\circ}}=\frac{0.500}{0.375}\\\text{ }&=&1.33\end{array}\\n2 ==1.00sin22.0sin30.0=0.3750.5001.33

Discussion

This is the index of refraction for water, and Snell could have determined it by measuring the angles and performing this calculation. He would then have found 1.33 to be the appropriate index of refraction for water in all other situations, such as when a ray passes from water to glass. Today we can verify that the index of refraction is related to the speed of light in a medium by measuring that speed directly.

Suppose that in a situation like that in Example 2, light goes from air to diamond and that the incident angle is 30.0º. Calculate the angle of refraction θ2 in the diamond. Again the index of refraction for air is taken to be n1 = 1.00, and we are given θ1 = 30.0º. We can look up the index of refraction for diamond in Table 1, finding n2 = 2.419. The only unknown in Snell’s law is θ2, which we wish to determine. Solving Snell’s law for sin θ2 yields

sin⁡θ2=n1n2sin⁡θ1\displaystyle\sin\theta_2=\frac{n_1}{n_2}\sin\theta_1\\sinθ2=n2n1sinθ1

.

Entering known values,

sin⁡θ2=1.002.419sin⁡30.0∘=(0.413)(0.500)=0.207\displaystyle\sin\theta_2=\frac{1.00}{2.419}\sin30.0^{\circ}=\left(0.413\right)\left(0.500\right)=0.207\\sinθ2=2.4191.00sin30.0=(0.413)(0.500)=0.207

.

The angle is thus θ2 = sin−1 0.207 = 11.9º. For the same 30º angle of incidence, the angle of refraction in diamond is significantly smaller than in water (11.9º rather than 22º—see the preceding example). This means there is a larger change in direction in diamond. The cause of a large change in direction is a large change in the index of refraction (or speed). In general, the larger the change in speed, the greater the effect on the direction of the ray.

  • The changing of a light ray’s direction when it passes through variations in matter is called refraction.

    The speed of light in vacuum c = 2.9972458 × 108 m/s ≈ 3.00 × 108 m/s.

    Index of refraction

    n=cvn=\frac{c}{v}\\n=vc

    , where v is the speed of light in the material, c is the speed of light in vacuum, and n is the index of refraction.

    Snell’s law, the law of refraction, is stated in equation form as n1 sin θ1 = n2 sinθ2.

  1. Diffusion by reflection from a rough surface is described in this chapter. Light can also be diffused by refraction. Describe how this occurs in a specific situation, such as light interacting with crushed ice.
  2. Why is the index of refraction always greater than or equal to 1?
  3. Does the fact that the light flash from lightning reaches you before its sound prove that the speed of light is extremely large or simply that it is greater than the speed of sound? Discuss how you could use this effect to get an estimate of the speed of light.
  4. Will light change direction toward or away from the perpendicular when it goes from air to water? Water to glass? Glass to air?
  5. Explain why an object in water always appears to be at a depth shallower than it actually is? Why do people sometimes sustain neck and spinal injuries when diving into unfamiliar ponds or waters?
  6. Explain why a person’s legs appear very short when wading in a pool. Justify your explanation with a ray diagram showing the path of rays from the feet to the eye of an observer who is out of the water.
  7. Why is the front surface of a thermometer curved as shown?

    What happens when a ray of light strikes the interface between two median perpendicular to it
    Figure 4. The curved surface of the thermometer serves a purpose.

  8. Suppose light were incident from air onto a material that had a negative index of refraction, say –1.3; where does the refracted light ray go?

  1. What is the speed of light in water? In glycerine?
  2. What is the speed of light in air? In crown glass?
  3. Calculate the index of refraction for a medium in which the speed of light is 2.012 × 108 m/s, and identify the most likely substance based on Table 1.
  4. In what substance in Table 1 is the speed of light 2.290 × 108 m/s?
  5. There was a major collision of an asteroid with the Moon in medieval times. It was described by monks at Canterbury Cathedral in England as a red glow on and around the Moon. How long after the asteroid hit the Moon, which is 3.84 × 105 km away, would the light first arrive on Earth?
  6. A scuba diver training in a pool looks at his instructor as shown in Figure 5. What angle does the ray from the instructor’s face make with the perpendicular to the water at the point where the ray enters? The angle between the ray in the water and the perpendicular to the water is 25.0º.

    What happens when a ray of light strikes the interface between two median perpendicular to it
    Figure 5. A scuba diver in a pool and his trainer look at each other.

  7. Components of some computers communicate with each other through optical fibers having an index of refraction n = 1.55. What time in nanoseconds is required for a signal to travel 0.200 m through such a fiber?
  8. (a) Using information in Figure 5, find the height of the instructor’s head above the water, noting that you will first have to calculate the angle of incidence. (b) Find the apparent depth of the diver’s head below water as seen by the instructor.
  9. Suppose you have an unknown clear substance immersed in water, and you wish to identify it by finding its index of refraction. You arrange to have a beam of light enter it at an angle of 45.0º, and you observe the angle of refraction to be 40.3º. What is the index of refraction of the substance and its likely identity?
  10. On the Moon’s surface, lunar astronauts placed a corner reflector, off which a laser beam is periodically reflected. The distance to the Moon is calculated from the round-trip time. What percent correction is needed to account for the delay in time due to the slowing of light in Earth’s atmosphere? Assume the distance to the Moon is precisely 3.84 × 108 m, and Earth’s atmosphere (which varies in density with altitude) is equivalent to a layer 30.0 km thick with a constant index of refraction n = 1.000293.
  11. Suppose Figure 6 represents a ray of light going from air through crown glass into water, such as going into a fish tank. Calculate the amount the ray is displaced by the glass (Δx), given that the incident angle is 40.0º and the glass is 1.00 cm thick.

    What happens when a ray of light strikes the interface between two median perpendicular to it
    Figure 6. A ray of light passes from one medium to a third by traveling through a second. The final direction is the same as if the second medium were not present, but the ray is displaced by Δx (shown exaggerated).

  12. Figure 6 shows a ray of light passing from one medium into a second and then a third. Show that θ3 is the same as it would be if the second medium were not present (provided total internal reflection does not occur).
  13. Unreasonable Results. Suppose light travels from water to another substance, with an angle of incidence of 10.0º and an angle of refraction of 14.9º. (a) What is the index of refraction of the other substance? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?
  14. Construct Your Own Problem. Consider sunlight entering the Earth’s atmosphere at sunrise and sunset—that is, at a 90º incident angle. Taking the boundary between nearly empty space and the atmosphere to be sudden, calculate the angle of refraction for sunlight. This lengthens the time the Sun appears to be above the horizon, both at sunrise and sunset. Now construct a problem in which you determine the angle of refraction for different models of the atmosphere, such as various layers of varying density. Your instructor may wish to guide you on the level of complexity to consider and on how the index of refraction varies with air density.
  15. Unreasonable Results. Light traveling from water to a gemstone strikes the surface at an angle of 80.0º and has an angle of refraction of 15.2º. (a) What is the speed of light in the gemstone? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

refraction: changing of a light ray’s direction when it passes through variations in matter

index of refraction: for a material, the ratio of the speed of light in vacuum to that in the material

1. 2.25 × 108 m/s in water; 2.04 × 108 m/s in glycerine 3. 1.490, polystyrene 5. 1.28 s 7. 1.03 ns

9. n = 1.46, fused quartz

13. (a) 0.898; (b) Can’t have n < 1.00 since this would imply a speed greater than c; (c) Refracted angle is too big relative to the angle of incidence.

15. (a)

c5.00\frac{c}{5.00}\\5.00c

; (b) Speed of light too slow, since index is much greater than that of diamond; (c) Angle of refraction is unreasonable relative to the angle of incidence.

CC licensed content, Shared previously


Page 2

By the end of this section, you will be able to:

  • Explain the phenomenon of total internal reflection.
  • Describe the workings and uses of fiber optics.
  • Analyze the reason for the sparkle of diamonds.

A good-quality mirror may reflect more than 90% of the light that falls on it, absorbing the rest. But it would be useful to have a mirror that reflects all of the light that falls on it. Interestingly, we can produce total reflection using an aspect of refraction.

Consider what happens when a ray of light strikes the surface between two materials, such as is shown in Figure 1a. Part of the light crosses the boundary and is refracted; the rest is reflected. If, as shown in the figure, the index of refraction for the second medium is less than for the first, the ray bends away from the perpendicular. (Since n1 > n2, the angle of refraction is greater than the angle of incidence—that is, θ1 > θ2.) Now imagine what happens as the incident angle is increased. This causes θ2 to increase also. The largest the angle of refraction θ2 can be is 90º, as shown in Figure 1b.The critical angle θc for a combination of materials is defined to be the incident angle θ1 that produces an angle of refraction of 90º. That is, θc is the incident angle for which θ2 = 90º. If the incident angle θ1 is greater than the critical angle, as shown in Figure 1c, then all of the light is reflected back into medium 1, a condition called total internal reflection.

The incident angle θ1 that produces an angle of refraction of 90º is called the critical angle, θc.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 1. (a) A ray of light crosses a boundary where the speed of light increases and the index of refraction decreases. That is, n2 < n1 . The ray bends away from the perpendicular. (b) The critical angle θc is the one for which the angle of refraction is. (c) Total internal reflection occurs when the incident angle is greater than the critical angle.

Snell’s law states the relationship between angles and indices of refraction. It is given by

n1 sin θ1 = n2 sin θ2.

When the incident angle equals the critical angle (θ1 = θc), the angle of refraction is 90º (θ2 = 90º). Noting that sin 90º = 1, Snell’s law in this case becomes

n1 sin θ1 = n2.

The critical angle θc for a given combination of materials is thus

θc=sin⁡−1(n2n1)\theta_{c}=\sin^{-1}\left(\frac{n_2}{n_1}\right)\\θc=sin1(n1n2)

for n1 > n2.

Total internal reflection occurs for any incident angle greater than the critical angle θc, and it can only occur when the second medium has an index of refraction less than the first. Note the above equation is written for a light ray that travels in medium 1 and reflects from medium 2, as shown in the figure.

What is the critical angle for light traveling in a polystyrene (a type of plastic) pipe surrounded by air? The index of refraction for polystyrene is found to be 1.49 in Figure 2, and the index of refraction of air can be taken to be 1.00, as before. Thus, the condition that the second medium (air) has an index of refraction less than the first (plastic) is satisfied, and the equation

θc=sin⁡−1(n2n1)\theta_{c}=\sin^{-1}\left(\frac{n_2}{n_1}\right)\\θc=sin1(n1n2)

 can be used to find the critical angle θc. Here, then, n2 = 1.00 and n1 = 1.49. The critical angle is given by

θc=sin⁡−1(n2n1)\theta_{c}=\sin^{-1}\left(\frac{n_2}{n_1}\right)\\θc=sin1(n1n2)

Substituting the identified values gives

θc=sin⁡−1(1.001.49) =sin⁡−1(0.671) =42.2∘\begin{array}{lll}\theta_{c}&=&\sin^{-1}\left(\frac{1.00}{1.49}\right)\\\text{ }&=&\sin^{-1}\left(0.671\right)\\\text{ }&=&42.2^{\circ}\end{array}\\θc  ===sin1(1.491.00)sin1(0.671)42.2

Discussion

This means that any ray of light inside the plastic that strikes the surface at an angle greater than 42.2º will be totally reflected. This will make the inside surface of the clear plastic a perfect mirror for such rays without any need for the silvering used on common mirrors. Different combinations of materials have different critical angles, but any combination with n1 > n2 can produce total internal reflection. The same calculation as made here shows that the critical angle for a ray going from water to air is 48.6º, while that from diamond to air is 24.4º, and that from flint glass to crown glass is 66.3º. There is no total reflection for rays going in the other direction—for example, from air to water—since the condition that the second medium must have a smaller index of refraction is not satisfied. A number of interesting applications of total internal reflection follow.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 2. Light entering a thin fiber may strike the inside surface at large or grazing angles and is completely reflected if these angles exceed the critical angle. Such rays continue down the fiber, even following it around corners, since the angles of reflection and incidence remain large.

Fiber optics is one application of total internal reflection that is in wide use. In communications, it is used to transmit telephone, internet, and cable TV signals. Fiber optics employs the transmission of light down fibers of plastic or glass. Because the fibers are thin, light entering one is likely to strike the inside surface at an angle greater than the critical angle and, thus, be totally reflected (See Figure 2.) The index of refraction outside the fiber must be smaller than inside, a condition that is easily satisfied by coating the outside of the fiber with a material having an appropriate refractive index. In fact, most fibers have a varying refractive index to allow more light to be guided along the fiber through total internal refraction. Rays are reflected around corners as shown, making the fibers into tiny light pipes.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 3. (a) An image is transmitted by a bundle of fibers that have fixed neighbors. (b) An endoscope is used to probe the body, both transmitting light to the interior and returning an image such as the one shown. (credit: Med_Chaos, Wikimedia Commons)

Bundles of fibers can be used to transmit an image without a lens, as illustrated in Figure 3. The output of a device called an endoscope is shown in Figure 3b. Endoscopes are used to explore the body through various orifices or minor incisions. Light is transmitted down one fiber bundle to illuminate internal parts, and the reflected light is transmitted back out through another to be observed. Surgery can be performed, such as arthroscopic surgery on the knee joint, employing cutting tools attached to and observed with the endoscope. Samples can also be obtained, such as by lassoing an intestinal polyp for external examination.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 4. Fibers in bundles are clad by a material that has a lower index of refraction than the core to ensure total internal reflection, even when fibers are in contact with one another. This shows a single fiber with its cladding.

Fiber optics has revolutionized surgical techniques and observations within the body. There are a host of medical diagnostic and therapeutic uses. The flexibility of the fiber optic bundle allows it to navigate around difficult and small regions in the body, such as the intestines, the heart, blood vessels, and joints. Transmission of an intense laser beam to burn away obstructing plaques in major arteries as well as delivering light to activate chemotherapy drugs are becoming commonplace. Optical fibers have in fact enabled microsurgery and remote surgery where the incisions are small and the surgeon’s fingers do not need to touch the diseased tissue. Fibers in bundles are surrounded by a cladding material that has a lower index of refraction than the core. (See Figure 4.) The cladding prevents light from being transmitted between fibers in a bundle. Without cladding, light could pass between fibers in contact, since their indices of refraction are identical. Since no light gets into the cladding (there is total internal reflection back into the core), none can be transmitted between clad fibers that are in contact with one another. The cladding prevents light from escaping out of the fiber; instead most of the light is propagated along the length of the fiber, minimizing the loss of signal and ensuring that a quality image is formed at the other end. The cladding and an additional protective layer make optical fibers flexible and durable.

The cladding prevents light from being transmitted between fibers in a bundle.

Special tiny lenses that can be attached to the ends of bundles of fibers are being designed and fabricated. Light emerging from a fiber bundle can be focused and a tiny spot can be imaged. In some cases the spot can be scanned, allowing quality imaging of a region inside the body. Special minute optical filters inserted at the end of the fiber bundle have the capacity to image tens of microns below the surface without cutting the surface—non-intrusive diagnostics. This is particularly useful for determining the extent of cancers in the stomach and bowel.

Most telephone conversations and Internet communications are now carried by laser signals along optical fibers. Extensive optical fiber cables have been placed on the ocean floor and underground to enable optical communications. Optical fiber communication systems offer several advantages over electrical (copper) based systems, particularly for long distances. The fibers can be made so transparent that light can travel many kilometers before it becomes dim enough to require amplification—much superior to copper conductors. This property of optical fibers is called low loss. Lasers emit light with characteristics that allow far more conversations in one fiber than are possible with electric signals on a single conductor. This property of optical fibers is called high bandwidth. Optical signals in one fiber do not produce undesirable effects in other adjacent fibers. This property of optical fibers is called reduced crosstalk. We shall explore the unique characteristics of laser radiation in a later chapter.

A light ray that strikes an object consisting of two mutually perpendicular reflecting surfaces is reflected back exactly parallel to the direction from which it came. This is true whenever the reflecting surfaces are perpendicular, and it is independent of the angle of incidence. Such an object, shown in Figure 5, is called a corner reflector, since the light bounces from its inside corner. Many inexpensive reflector buttons on bicycles, cars, and warning signs have corner reflectors designed to return light in the direction from which it originated. It was more expensive for astronauts to place one on the moon. Laser signals can be bounced from that corner reflector to measure the gradually increasing distance to the moon with great precision.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 5. (a) Astronauts placed a corner reflector on the moon to measure its gradually increasing orbital distance. (credit: NASA) (b) The bright spots on these bicycle safety reflectors are reflections of the flash of the camera that took this picture on a dark night. (credit: Julo, Wikimedia Commons)

Corner reflectors are perfectly efficient when the conditions for total internal reflection are satisfied. With common materials, it is easy to obtain a critical angle that is less than 45º. One use of these perfect mirrors is in binoculars, as shown in Figure 6. Another use is in periscopes found in submarines.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 6. These binoculars employ corner reflectors with total internal reflection to get light to the observer’s eyes.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 7. Light cannot easily escape a diamond, because its critical angle with air is so small. Most reflections are total, and the facets are placed so that light can exit only in particular ways—thus concentrating the light and making the diamond sparkle.

Total internal reflection, coupled with a large index of refraction, explains why diamonds sparkle more than other materials. The critical angle for a diamond-to-air surface is only 24.4º, and so when light enters a diamond, it has trouble getting back out. (See Figure 7.) Although light freely enters the diamond, it can exit only if it makes an angle less than 24.4º. Facets on diamonds are specifically intended to make this unlikely, so that the light can exit only in certain places. Good diamonds are very clear, so that the light makes many internal reflections and is concentrated at the few places it can exit—hence the sparkle. (Zircon is a natural gemstone that has an exceptionally large index of refraction, but not as large as diamond, so it is not as highly prized. Cubic zirconia is manufactured and has an even higher index of refraction (≈2.17), but still less than that of diamond.) The colors you see emerging from a sparkling diamond are not due to the diamond’s color, which is usually nearly colorless. Those colors result from dispersion, the topic of Dispersion: The Rainbow and Prisms. Colored diamonds get their color from structural defects of the crystal lattice and the inclusion of minute quantities of graphite and other materials. The Argyle Mine in Western Australia produces around 90% of the world’s pink, red, champagne, and cognac diamonds, while around 50% of the world’s clear diamonds come from central and southern Africa.

Explore bending of light between two media with different indices of refraction. See how changing from air to water to glass changes the bending angle. Play with prisms of different shapes and make rainbows.

What happens when a ray of light strikes the interface between two median perpendicular to it
Click to download the simulation. Run using Java.

  • The incident angle that produces an angle of refraction of 90º is called critical angle.
  • Total internal reflection is a phenomenon that occurs at the boundary between two mediums, such that if the incident angle in the first medium is greater than the critical angle, then all the light is reflected back into that medium.
  • Fiber optics involves the transmission of light down fibers of plastic or glass, applying the principle of total internal reflection.
  • Endoscopes are used to explore the body through various orifices or minor incisions, based on the transmission of light through optical fibers.
  • Cladding prevents light from being transmitted between fibers in a bundle.
  • Diamonds sparkle due to total internal reflection coupled with a large index of refraction.

  1. A ring with a colorless gemstone is dropped into water. The gemstone becomes invisible when submerged. Can it be a diamond? Explain.
  2. A high-quality diamond may be quite clear and colorless, transmitting all visible wavelengths with little absorption. Explain how it can sparkle with flashes of brilliant color when illuminated by white light.
  3. Is it possible that total internal reflection plays a role in rainbows? Explain in terms of indices of refraction and angles, perhaps referring to Figure 8. Some of us have seen the formation of a double rainbow. Is it physically possible to observe a triple rainbow?

    What happens when a ray of light strikes the interface between two median perpendicular to it
    Figure 8. Double rainbows are not a very common observance. (credit: InvictusOU812, Flickr)

  4. The most common type of mirage is an illusion that light from faraway objects is reflected by a pool of water that is not really there. Mirages are generally observed in deserts, when there is a hot layer of air near the ground. Given that the refractive index of air is lower for air at higher temperatures, explain how mirages can be formed.

  1. Verify that the critical angle for light going from water to air is 48.6º, as discussed at the end of Example 1, regarding the critical angle for light traveling in a polystyrene (a type of plastic) pipe surrounded by air.
  2. (a) At the end of Example 1, it was stated that the critical angle for light going from diamond to air is 24.4º. Verify this. (b) What is the critical angle for light going from zircon to air?
  3. An optical fiber uses flint glass clad with crown glass. What is the critical angle?
  4. At what minimum angle will you get total internal reflection of light traveling in water and reflected from ice?
  5. Suppose you are using total internal reflection to make an efficient corner reflector. If there is air outside and the incident angle is 45.0º, what must be the minimum index of refraction of the material from which the reflector is made?
  6. You can determine the index of refraction of a substance by determining its critical angle. (a) What is the index of refraction of a substance that has a critical angle of 68.4º when submerged in water? What is the substance, based on Figure 9? (b) What would the critical angle be for this substance in air?

    What happens when a ray of light strikes the interface between two median perpendicular to it
    Figure 9. A light ray inside a liquid strikes the surface at the critical angle and undergoes total internal reflection.

  7. A ray of light, emitted beneath the surface of an unknown liquid with air above it, undergoes total internal reflection as shown in Figure 9. What is the index of refraction for the liquid and its likely identification?
  8. A light ray entering an optical fiber surrounded by air is first refracted and then reflected as shown in Figure 10. Show that if the fiber is made from crown glass, any incident ray will be totally internally reflected.

    What happens when a ray of light strikes the interface between two median perpendicular to it
    Figure 10. A light ray enters the end of a fiber, the surface of which is perpendicular to its sides. Examine the conditions under which it may be totally internally reflected.

critical angle: incident angle that produces an angle of refraction of 90º

fiber optics: transmission of light down fibers of plastic or glass, applying the principle of total internal reflection

corner reflector: an object consisting of two mutually perpendicular reflecting surfaces, so that the light that enters is reflected back exactly parallel to the direction from which it came

zircon: natural gemstone with a large index of refraction

3. 66.3º 5. > 1.414 7. 1.50, benzene

CC licensed content, Shared previously


Page 3

By the end of this section, you will be able to:

  • Explain the phenomenon of dispersion and discuss its advantages and disadvantages.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 1. The colors of the rainbow (a) and those produced by a prism (b) are identical. (credit: Alfredo55, Wikimedia Commons; NASA)

Everyone enjoys the spectacle of a rainbow glimmering against a dark stormy sky. How does sunlight falling on clear drops of rain get broken into the rainbow of colors we see? The same process causes white light to be broken into colors by a clear glass prism or a diamond. (See Figure 1.)

We see about six colors in a rainbow—red, orange, yellow, green, blue, and violet; sometimes indigo is listed, too. Those colors are associated with different wavelengths of light, as shown in Figure 2. When our eye receives pure-wavelength light, we tend to see only one of the six colors, depending on wavelength. The thousands of other hues we can sense in other situations are our eye’s response to various mixtures of wavelengths. White light, in particular, is a fairly uniform mixture of all visible wavelengths. Sunlight, considered to be white, actually appears to be a bit yellow because of its mixture of wavelengths, but it does contain all visible wavelengths. The sequence of colors in rainbows is the same sequence as the colors plotted versus wavelength in Figure 2. What this implies is that white light is spread out according to wavelength in a rainbow. Dispersion is defined as the spreading of white light into its full spectrum of wavelengths. More technically, dispersion occurs whenever there is a process that changes the direction of light in a manner that depends on wavelength. Dispersion, as a general phenomenon, can occur for any type of wave and always involves wavelength-dependent processes.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 2. Even though rainbows are associated with seven colors, the rainbow is a continuous distribution of colors according to wavelengths.

Dispersion is defined to be the spreading of white light into its full spectrum of wavelengths.

Refraction is responsible for dispersion in rainbows and many other situations. The angle of refraction depends on the index of refraction, as we saw in The Law of Refraction. We know that the index of refraction n depends on the medium. But for a given medium, n also depends on wavelength. (See Table 1. Note that, for a given medium, n increases as wavelength decreases and is greatest for violet light. Thus violet light is bent more than red light, as shown for a prism in Figure 3b, and the light is dispersed into the same sequence of wavelengths as seen in Figure 1 and Figure 2.
Table 1. Index of Refraction n in Selected Media at Various Wavelengths
Medium Red (660 nm) Orange (610 nm) Yellow (580 nm) Green (550 nm) Blue (470 nm) Violet (410 nm)
Water 1.331 1.332 1.333 1.335 1.338 1.342
Diamond 2.410 2.415 2.417 2.426 2.444 2.458
Glass, crown 1.512 1.514 1.518 1.519 1.524 1.530
Glass, flint 1.662 1.665 1.667 1.674 1.684 1.698
Polystyrene 1.488 1.490 1.492 1.493 1.499 1.506
Quartz, fused 1.455 1.456 1.458 1.459 1.462 1.468

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 3. (a) A pure wavelength of light falls onto a prism and is refracted at both surfaces. (b) White light is dispersed by the prism (shown exaggerated). Since the index of refraction varies with wavelength, the angles of refraction vary with wavelength. A sequence of red to violet is produced, because the index of refraction increases steadily with decreasing wavelength.

Any type of wave can exhibit dispersion. Sound waves, all types of electromagnetic waves, and water waves can be dispersed according to wavelength. Dispersion occurs whenever the speed of propagation depends on wavelength, thus separating and spreading out various wavelengths. Dispersion may require special circumstances and can result in spectacular displays such as in the production of a rainbow. This is also true for sound, since all frequencies ordinarily travel at the same speed. If you listen to sound through a long tube, such as a vacuum cleaner hose, you can easily hear it is dispersed by interaction with the tube. Dispersion, in fact, can reveal a great deal about what the wave has encountered that disperses its wavelengths. The dispersion of electromagnetic radiation from outer space, for example, has revealed much about what exists between the stars—the so-called empty space.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 4. Part of the light falling on this water drop enters and is reflected from the back of the drop. This light is refracted and dispersed both as it enters and as it leaves the drop.

Rainbows are produced by a combination of refraction and reflection. You may have noticed that you see a rainbow only when you look away from the sun. Light enters a drop of water and is reflected from the back of the drop, as shown in Figure 4. The light is refracted both as it enters and as it leaves the drop. Since the index of refraction of water varies with wavelength, the light is dispersed, and a rainbow is observed, as shown in Figure 5a. (There is no dispersion caused by reflection at the back surface, since the law of reflection does not depend on wavelength.) The actual rainbow of colors seen by an observer depends on the myriad of rays being refracted and reflected toward the observer’s eyes from numerous drops of water. The effect is most spectacular when the background is dark, as in stormy weather, but can also be observed in waterfalls and lawn sprinklers. The arc of a rainbow comes from the need to be looking at a specific angle relative to the direction of the sun, as illustrated in Figure 5b. (If there are two reflections of light within the water drop, another “secondary” rainbow is produced. This rare event produces an arc that lies above the primary rainbow arc—see Figure 5c.)

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 5. (a) Different colors emerge in different directions, and so you must look at different locations to see the various colors of a rainbow. (b) The arc of a rainbow results from the fact that a line between the observer and any point on the arc must make the correct angle with the parallel rays of sunlight to receive the refracted rays. (c) Double rainbow. (credit: Nicholas, Wikimedia Commons)

Rainbows are produced by a combination of refraction and reflection.

Dispersion may produce beautiful rainbows, but it can cause problems in optical systems. White light used to transmit messages in a fiber is dispersed, spreading out in time and eventually overlapping with other messages. Since a laser produces a nearly pure wavelength, its light experiences little dispersion, an advantage over white light for transmission of information. In contrast, dispersion of electromagnetic waves coming to us from outer space can be used to determine the amount of matter they pass through. As with many phenomena, dispersion can be useful or a nuisance, depending on the situation and our human goals.

How does a lens form an image? See how light rays are refracted by a lens. Watch how the image changes when you adjust the focal length of the lens, move the object, move the lens, or move the screen.

What happens when a ray of light strikes the interface between two median perpendicular to it
Click to run the simulation.

  • The spreading of white light into its full spectrum of wavelengths is called dispersion.
  • Rainbows are produced by a combination of refraction and reflection and involve the dispersion of sunlight into a continuous distribution of colors.
  • Dispersion produces beautiful rainbows but also causes problems in certain optical systems.

  1. (a) What is the ratio of the speed of red light to violet light in diamond, based on [link]? (b) What is this ratio in polystyrene? (c) Which is more dispersive?
  2. A beam of white light goes from air into water at an incident angle of 75.0º. At what angles are the red (660 nm) and violet (410 nm) parts of the light refracted?
  3. By how much do the critical angles for red (660 nm) and violet (410 nm) light differ in a diamond surrounded by air?
  4. (a) A narrow beam of light containing yellow (580 nm) and green (550 nm) wavelengths goes from polystyrene to air, striking the surface at a 30.0º incident angle. What is the angle between the colors when they emerge? (b) How far would they have to travel to be separated by 1.00 mm?
  5. A parallel beam of light containing orange (610 nm) and violet (410 nm) wavelengths goes from fused quartz to water, striking the surface between them at a 60.0º incident angle. What is the angle between the two colors in water?
  6. A ray of 610 nm light goes from air into fused quartz at an incident angle of 55.0º. At what incident angle must 470 nm light enter flint glass to have the same angle of refraction?
  7. A narrow beam of light containing red (660 nm) and blue (470 nm) wavelengths travels from air through a 1.00 cm thick flat piece of crown glass and back to air again. The beam strikes at a 30.0º incident angle. (a) At what angles do the two colors emerge? (b) By what distance are the red and blue separated when they emerge?
  8. A narrow beam of white light enters a prism made of crown glass at a 45.0º incident angle, as shown in Figure 6. At what angles, θR and θV, do the red (660 nm) and violet (410 nm) components of the light emerge from the prism?

    What happens when a ray of light strikes the interface between two median perpendicular to it
    Figure 6. This prism will disperse the white light into a rainbow of colors. The incident angle is 45.0º, and the angles at which the red and violet light emerge are θR and θV.

dispersion: spreading of white light into its full spectrum of wavelengths

rainbow: dispersion of sunlight into a continuous distribution of colors according to wavelength, produced by the refraction and reflection of sunlight by water droplets in the sky

2. 46.5º, red; 46.0º, violet 4. (a) 0.043º; (b) 1.33 m 6. 71.3º 8. 53.5º, red; 55.2º, violet

CC licensed content, Shared previously


Page 4

By the end of this section, you will be able to:

  • List the rules for ray tracking for thin lenses.
  • Illustrate the formation of images using the technique of ray tracking.
  • Determine power of a lens given the focal length.

Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to the eye to a camera’s zoom lens. In this section, we will use the law of refraction to explore the properties of lenses and how they form images.

The word lens derives from the Latin word for a lentil bean, the shape of which is similar to the convex lens in Figure 1. The convex lens shown has been shaped so that all light rays that enter it parallel to its axis cross one another at a single point on the opposite side of the lens. (The axis is defined to be a line normal to the lens at its center, as shown in Figure 1.) Such a lens is called a converging (or convex) lens for the converging effect it has on light rays. An expanded view of the path of one ray through the lens is shown, to illustrate how the ray changes direction both as it enters and as it leaves the lens. Since the index of refraction of the lens is greater than that of air, the ray moves towards the perpendicular as it enters and away from the perpendicular as it leaves. (This is in accordance with the law of refraction.) Due to the lens’s shape, light is thus bent toward the axis at both surfaces. The point at which the rays cross is defined to be the focal point F of the lens. The distance from the center of the lens to its focal point is defined to be the focal length f of the lens. Figure 2 shows how a converging lens, such as that in a magnifying glass, can converge the nearly parallel light rays from the sun to a small spot.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 1. Rays of light entering a converging lens parallel to its axis converge at its focal point F. (Ray 2 lies on the axis of the lens.) The distance from the center of the lens to the focal point is the lens’s focal length f. An expanded view of the path taken by ray 1 shows the perpendiculars and the angles of incidence and refraction at both surfaces.

The lens in which light rays that enter it parallel to its axis cross one another at a single point on the opposite side with a converging effect is called converging lens.

The point at which the light rays cross is called the focal point F of the lens.

The distance from the center of the lens to its focal point is called focal length f.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 2. Sunlight focused by a converging magnifying glass can burn paper. Light rays from the sun are nearly parallel and cross at the focal point of the lens. The more powerful the lens, the closer to the lens the rays will cross.

The greater effect a lens has on light rays, the more powerful it is said to be. For example, a powerful converging lens will focus parallel light rays closer to itself and will have a smaller focal length than a weak lens. The light will also focus into a smaller and more intense spot for a more powerful lens. The power P of a lens is defined to be the inverse of its focal length. In equation form, this is

P=1fP=\frac{1}{f}\\P=f1

.

The power P of a lens is defined to be the inverse of its focal length. In equation form, this is 

P=1fP=\frac{1}{f}\\P=f1

, where f is the focal length of the lens, which must be given in meters (and not cm or mm). The power of a lens P has the unit diopters (D), provided that the focal length is given in meters. That is,

1D=1m, or 1m−11\text{D}=\frac{1}{\text{m}}\text{, or }1\text{m}^{-1}\\1D=m1, or 1m1

. (Note that this power (optical power, actually) is not the same as power in watts defined in the chapter Work, Energy, and Energy Resources. It is a concept related to the effect of optical devices on light.) Optometrists prescribe common spectacles and contact lenses in units of diopters.

Suppose you take a magnifying glass out on a sunny day and you find that it concentrates sunlight to a small spot 8.00 cm away from the lens. What are the focal length and power of the lens? The situation here is the same as those shown in Figure 1 and Figure 2. The Sun is so far away that the Sun’s rays are nearly parallel when they reach Earth. The magnifying glass is a convex (or converging) lens, focusing the nearly parallel rays of sunlight. Thus the focal length of the lens is the distance from the lens to the spot, and its power is the inverse of this distance (in m). The focal length of the lens is the distance from the center of the lens to the spot, given to be 8.00 cm. Thus,

f = 8.00 cm.

To find the power of the lens, we must first convert the focal length to meters; then, we substitute this value into the equation for power. This gives

P=1f=10.0800 m=12.5 DP=\frac{1}{f}=\frac{1}{0.0800\text{ m}}=12.5\text{ D}\\P=f1=0.0800 m1=12.5 D

.

Discussion

This is a relatively powerful lens. The power of a lens in diopters should not be confused with the familiar concept of power in watts. It is an unfortunate fact that the word “power” is used for two completely different concepts. If you examine a prescription for eyeglasses, you will note lens powers given in diopters. If you examine the label on a motor, you will note energy consumption rate given as a power in watts.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 3. Rays of light entering a diverging lens parallel to its axis are diverged, and all appear to originate at its focal point F. The dashed lines are not rays—they indicate the directions from which the rays appear to come. The focal length f of a diverging lens is negative. An expanded view of the path taken by ray 1 shows the perpendiculars and the angles of incidence and refraction at both surfaces.

Figure 3 shows a concave lens and the effect it has on rays of light that enter it parallel to its axis (the path taken by ray 2 in the Figure is the axis of the lens). The concave lens is a diverging lens, because it causes the light rays to bend away (diverge) from its axis. In this case, the lens has been shaped so that all light rays entering it parallel to its axis appear to originate from the same point, F, defined to be the focal point of a diverging lens. The distance from the center of the lens to the focal point is again called the focal length f of the lens. Note that the focal length and power of a diverging lens are defined to be negative.

For example, if the distance to F in Figure 3 is 5.00 cm, then the focal length is f = –5.00 cm and the power of the lens is P = –20 D. An expanded view of the path of one ray through the lens is shown in the Figure to illustrate how the shape of the lens, together with the law of refraction, causes the ray to follow its particular path and be diverged.

A lens that causes the light rays to bend away from its axis is called a diverging lens.

As noted in the initial discussion of the law of refraction in The Law of Refraction, the paths of light rays are exactly reversible. This means that the direction of the arrows could be reversed for all of the rays in Figure 1 and Figure 3. For example, if a point light source is placed at the focal point of a convex lens, as shown in Figure 4, parallel light rays emerge from the other side.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 4. A small light source, like a light bulb filament, placed at the focal point of a convex lens, results in parallel rays of light emerging from the other side. The paths are exactly the reverse of those shown in Figure 1. This technique is used in lighthouses and sometimes in traffic lights to produce a directional beam of light from a source that emits light in all directions.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 6. The light ray through the center of a thin lens is deflected by a negligible amount and is assumed to emerge parallel to its original path (shown as a shaded line).

Ray tracing is the technique of determining or following (tracing) the paths that light rays take. For rays passing through matter, the law of refraction is used to trace the paths. Here we use ray tracing to help us understand the action of lenses in situations ranging from forming images on film to magnifying small print to correcting nearsightedness. While ray tracing for complicated lenses, such as those found in sophisticated cameras, may require computer techniques, there is a set of simple rules for tracing rays through thin lenses.

A thin lens is defined to be one whose thickness allows rays to refract, as illustrated in Figure 1, but does not allow properties such as dispersion and aberrations. An ideal thin lens has two refracting surfaces but the lens is thin enough to assume that light rays bend only once. A thin symmetrical lens has two focal points, one on either side and both at the same distance from the lens. (See Figure 6.)

Another important characteristic of a thin lens is that light rays through its center are deflected by a negligible amount, as seen in Figure 5.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 6. Thin lenses have the same focal length on either side. (a) Parallel light rays entering a converging lens from the right cross at its focal point on the left. (b) Parallel light rays entering a diverging lens from the right seem to come from the focal point on the right.

A thin lens is defined to be one whose thickness allows rays to refract but does not allow properties such as dispersion and aberrations.

Look through your eyeglasses (or those of a friend) backward and forward and comment on whether they act like thin lenses.

Using paper, pencil, and a straight edge, ray tracing can accurately describe the operation of a lens. The rules for ray tracing for thin lenses are based on the illustrations already discussed:
  1. A ray entering a converging lens parallel to its axis passes through the focal point F of the lens on the other side. (See rays 1 and 3 in Figure 1.)
  2. A ray entering a diverging lens parallel to its axis seems to come from the focal point F. (See rays 1 and 3 in Figure 2.)
  3. A ray passing through the center of either a converging or a diverging lens does not change direction. (See Figure 5, and see ray 2 in Figure 1 and Figure 2.)
  4. A ray entering a converging lens through its focal point exits parallel to its axis. (The reverse of rays 1 and 3 in Figure 1.)
  5. A ray that enters a diverging lens by heading toward the focal point on the opposite side exits parallel to the axis. (The reverse of rays 1 and 3 in Figure 2.)

  1. A ray entering a converging lens parallel to its axis passes through the focal point F of the lens on the other side.
  2. A ray entering a diverging lens parallel to its axis seems to come from the focal point F.
  3. A ray passing through the center of either a converging or a diverging lens does not change direction.
  4. A ray entering a converging lens through its focal point exits parallel to its axis.
  5. A ray that enters a diverging lens by heading toward the focal point on the opposite side exits parallel to the axis.

In some circumstances, a lens forms an obvious image, such as when a movie projector casts an image onto a screen. In other cases, the image is less obvious. Where, for example, is the image formed by eyeglasses? We will use ray tracing for thin lenses to illustrate how they form images, and we will develop equations to describe the image formation quantitatively.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 7. Ray tracing is used to locate the image formed by a lens. Rays originating from the same point on the object are traced—the three chosen rays each follow one of the rules for ray tracing, so that their paths are easy to determine. The image is located at the point where the rays cross. In this case, a real image—one that can be projected on a screen—is formed.

Consider an object some distance away from a converging lens, as shown in Figure 7. To find the location and size of the image formed, we trace the paths of selected light rays originating from one point on the object, in this case the top of the person’s head. The Figure shows three rays from the top of the object that can be traced using the ray tracing rules given above. (Rays leave this point going in many directions, but we concentrate on only a few with paths that are easy to trace.) The first ray is one that enters the lens parallel to its axis and passes through the focal point on the other side (rule 1). The second ray passes through the center of the lens without changing direction (rule 3). The third ray passes through the nearer focal point on its way into the lens and leaves the lens parallel to its axis (rule 4). The three rays cross at the same point on the other side of the lens. The image of the top of the person’s head is located at this point. All rays that come from the same point on the top of the person’s head are refracted in such a way as to cross at the point shown. Rays from another point on the object, such as her belt buckle, will also cross at another common point, forming a complete image, as shown. Although three rays are traced in Figure 7, only two are necessary to locate the image. It is best to trace rays for which there are simple ray tracing rules. Before applying ray tracing to other situations, let us consider the example shown in Figure 7 in more detail.

The image formed in Figure 7 is a real image, meaning that it can be projected. That is, light rays from one point on the object actually cross at the location of the image and can be projected onto a screen, a piece of film, or the retina of an eye, for example. Figure 8 shows how such an image would be projected onto film by a camera lens. This Figure also shows how a real image is projected onto the retina by the lens of an eye. Note that the image is there whether it is projected onto a screen or not.

The image in which light rays from one point on the object actually cross at the location of the image and can be projected onto a screen, a piece of film, or the retina of an eye is called a real image.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 8. Real images can be projected. (a) A real image of the person is projected onto film. (b) The converging nature of the multiple surfaces that make up the eye result in the projection of a real image on the retina.

Several important distances appear in Figure 7. We define do to be the object distance, the distance of an object from the center of a lens. Image distance di is defined to be the distance of the image from the center of a lens. The height of the object and height of the image are given the symbols ho and hi, respectively. Images that appear upright relative to the object have heights that are positive and those that are inverted have negative heights. Using the rules of ray tracing and making a scale drawing with paper and pencil, like that in Figure 7, we can accurately describe the location and size of an image. But the real benefit of ray tracing is in visualizing how images are formed in a variety of situations. To obtain numerical information, we use a pair of equations that can be derived from a geometric analysis of ray tracing for thin lenses. The thin lens equations are

1do+1di=1f\frac{1}{d_\text{o}}+\frac{1}{d_{\text{i}}}=\frac{1}{f}\\do1+di1=f1

 and 

hiho=dido=m\frac{h_{\text{i}}}{h_\text{o}}=\frac{d_{\text{i}}}{d_{\text{o}}}=m\\hohi=dodi=m

.

We define the ratio of image height to object height

(hiho)\left(\frac{h_{\text{i}}}{h_\text{o}}\right)\\(hohi)

 to be the magnification m. (The minus sign in the equation above will be discussed shortly.) The thin lens equations are broadly applicable to all situations involving thin lenses (and “thin” mirrors, as we will see later). We will explore many features of image formation in the following worked examples.

The distance of the image from the center of the lens is called image distance.

1do+1di=1f\displaystyle\frac{1}{d_\text{o}}+\frac{1}{d_{\text{i}}}=\frac{1}{f}\\do1+di1=f1

hiho=dido=m\displaystyle\frac{h_{\text{i}}}{h_\text{o}}=\frac{d_{\text{i}}}{d_{\text{o}}}=m\\hohi=dodi=m

A clear glass light bulb is placed 0.750 m from a convex lens having a 0.500 m focal length, as shown in Figure 9. Use ray tracing to get an approximate location for the image. Then use the thin lens equations to calculate both the location of the image and its magnification. Verify that ray tracing and the thin lens equations produce consistent results.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 9. A light bulb placed 0.750 m from a lens having a 0.500 m focal length produces a real image on a poster board as discussed in the example above. Ray tracing predicts the image location and size.

Since the object is placed farther away from a converging lens than the focal length of the lens, this situation is analogous to those illustrated in Figure 7 and Figure 8. Ray tracing to scale should produce similar results for di. Numerical solutions for di and m can be obtained using the thin lens equations, noting that do = 0.750 m and f = 0.500 m. The ray tracing to scale in Figure 9 shows two rays from a point on the bulb’s filament crossing about 1.50 m on the far side of the lens. Thus the image distance di is about 1.50 m. Similarly, the image height based on ray tracing is greater than the object height by about a factor of 2, and the image is inverted. Thus m is about –2. The minus sign indicates that the image is inverted.

The thin lens equations can be used to find di from the given information:

1do+1di=1f\frac{1}{d_\text{o}}+\frac{1}{d_{\text{i}}}=\frac{1}{f}\\do1+di1=f1

.

Rearranging to isolate di gives

1di=1f−1do\frac{1}{d_{\text{i}}}=\frac{1}{f}-\frac{1}{d_\text{o}}\\di1=f1do1

.

Entering known quantities gives a value for

1di\frac{1}{d_{\text{i}}}\\di1

:

1di=10.500 m−10.750 m=0.667m\frac{1}{d_{\text{i}}}=\frac{1}{0.500\text{ m}}-\frac{1}{0.750\text{ m}}=\frac{0.667}{\text{m}}\\di1=0.500 m10.750 m1=m0.667

.

This must be inverted to find di:

di=m0.667=1.50 md_{\text{i}}=\frac{\text{m}}{0.667}=1.50\text{ m}\\di=0.667m=1.50 m

.

Note that another way to find di is to rearrange the equation:

1di=1f−1do\frac{1}{d_\text{i}}=\frac{1}{f}-\frac{1}{d_{\text{o}}}\\di1=f1do1

.

This yields the equation for the image distance as:

di=fdodo−fd_{\text{i}}=\frac{fd_{\text{o}}}{d_{\text{o}}-f}\\di=doffdo

Note that there is no inverting here.

The thin lens equations can be used to find the magnification m, since both di and do are known. Entering their values gives

m=−dido=−1.50 m0.750 m=−2.00\displaystyle{m}=-\frac{d_{\text{i}}}{d_{\text{o}}}=-\frac{1.50\text{ m}}{0.750\text{ m}}=-2.00\\m=dodi=0.750 m1.50 m=2.00

Discussion

Note that the minus sign causes the magnification to be negative when the image is inverted. Ray tracing and the use of the thin lens equations produce consistent results. The thin lens equations give the most precise results, being limited only by the accuracy of the given information. Ray tracing is limited by the accuracy with which you can draw, but it is highly useful both conceptually and visually.

Real images, such as the one considered in the previous example, are formed by converging lenses whenever an object is farther from the lens than its focal length. This is true for movie projectors, cameras, and the eye. We shall refer to these as case 1 images. A case 1 image is formed when do > f and f is positive, as in Figure 10a. (A summary of the three cases or types of image formation appears at the end of this section.)

A different type of image is formed when an object, such as a person's face, is held close to a convex lens. The image is upright and larger than the object, as seen in Figure 10b, and so the lens is called a magnifier. If you slowly pull the magnifier away from the face, you will see that the magnification steadily increases until the image begins to blur. Pulling the magnifier even farther away produces an inverted image as seen in Figure 10a. The distance at which the image blurs, and beyond which it inverts, is the focal length of the lens. To use a convex lens as a magnifier, the object must be closer to the converging lens than its focal length. This is called a case 2 image. A case 2 image is formed when do < f and f is positive.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 10. (a) When a converging lens is held farther away from the face than the lens’s focal length, an inverted image is formed. This is a case 1 image. Note that the image is in focus but the face is not, because the image is much closer to the camera taking this photograph than the face. (credit: DaMongMan, Flickr) (b) A magnified image of a face is produced by placing it closer to the converging lens than its focal length. This is a case 2 image. (credit: Casey Fleser, Flickr)

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 11. Ray tracing predicts the image location and size for an object held closer to a converging lens than its focal length. Ray 1 enters parallel to the axis and exits through the focal point on the opposite side, while ray 2 passes through the center of the lens without changing path. The two rays continue to diverge on the other side of the lens, but both appear to come from a common point, locating the upright, magnified, virtual image. This is a case 2 image.

Figure 11 uses ray tracing to show how an image is formed when an object is held closer to a converging lens than its focal length. Rays coming from a common point on the object continue to diverge after passing through the lens, but all appear to originate from a point at the location of the image. The image is on the same side of the lens as the object and is farther away from the lens than the object. This image, like all case 2 images, cannot be projected and, hence, is called a virtual image.

Light rays only appear to originate at a virtual image; they do not actually pass through that location in space. A screen placed at the location of a virtual image will receive only diffuse light from the object, not focused rays from the lens. Additionally, a screen placed on the opposite side of the lens will receive rays that are still diverging, and so no image will be projected on it. We can see the magnified image with our eyes, because the lens of the eye converges the rays into a real image projected on our retina. Finally, we note that a virtual image is upright and larger than the object, meaning that the magnification is positive and greater than 1.

An image that is on the same side of the lens as the object and cannot be projected on a screen is called a virtual image.

Suppose the book page in Figure 11a is held 7.50 cm from a convex lens of focal length 10.0 cm, such as a typical magnifying glass might have. What magnification is produced? We are given that do = 7.50 cm and f = 10.0 cm, so we have a situation where the object is placed closer to the lens than its focal length. We therefore expect to get a case 2 virtual image with a positive magnification that is greater than 1. Ray tracing produces an image like that shown in Figure 11, but we will use the thin lens equations to get numerical solutions in this example. To find the magnification m, we try to use magnification equation,

m=−didom=-\frac{d_{\text{i}}}{d_{\text{o}}}\\m=dodi

. We do not have a value for di, so that we must first find the location of the image using lens equation. (The procedure is the same as followed in the preceding example, where do and f were known.) Rearranging the magnification equation to isolate di gives

1di=1f−1do\frac{1}{d_\text{i}}=\frac{1}{f}-\frac{1}{d_{\text{o}}}\\di1=f1do1

.

Entering known values, we obtain a value for

1di\frac{1}{d_\text{i}}\\di1

:

1di=110.0 cm−17.50 cm=−0.0333cm\frac{1}{d_\text{i}}=\frac{1}{10.0\text{ cm}}-\frac{1}{7.50\text{ cm}}=\frac{-0.0333}{\text{cm}}\\di1=10.0 cm17.50 cm1=cm0.0333

.

This must be inverted to find di:

di=−cm0.0333=−30.0 cmd_{\text{i}}=-\frac{\text{cm}}{0.0333}=-30.0\text{ cm}\\di=0.0333cm=30.0 cm

.

Now the thin lens equation can be used to find the magnification m, since both di and do are known. Entering their values gives

m=−dido=−−30.0 cm10.0 cm=3.00\displaystyle{m}=-\frac{d_{\text{i}}}{d_{\text{o}}}=-\frac{-30.0\text{ cm}}{10.0\text{ cm}}=3.00\\m=dodi=10.0 cm30.0 cm=3.00

Discussion

A number of results in this example are true of all case 2 images, as well as being consistent with Figure 11. Magnification is indeed positive (as predicted), meaning the image is upright. The magnification is also greater than 1, meaning that the image is larger than the object—in this case, by a factor of 3. Note that the image distance is negative. This means the image is on the same side of the lens as the object. Thus the image cannot be projected and is virtual. (Negative values of di occur for virtual images.) The image is farther from the lens than the object, since the image distance is greater in magnitude than the object distance. The location of the image is not obvious when you look through a magnifier. In fact, since the image is bigger than the object, you may think the image is closer than the object. But the image is farther away, a fact that is useful in correcting farsightedness, as we shall see in a later section.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 12. A car viewed through a concave or diverging lens looks upright. This is a case 3 image. (credit: Daniel Oines, Flickr)

A third type of image is formed by a diverging or concave lens. Try looking through eyeglasses meant to correct nearsightedness. (See Figure 12.) You will see an image that is upright but smaller than the object. This means that the magnification is positive but less than 1. The ray diagram in Figure 13 shows that the image is on the same side of the lens as the object and, hence, cannot be projected—it is a virtual image. Note that the image is closer to the lens than the object. This is a case 3 image, formed for any object by a negative focal length or diverging lens.

What happens when a ray of light strikes the interface between two median perpendicular to it
Figure 13. Ray tracing predicts the image location and size for a concave or diverging lens. Ray 1 enters parallel to the axis and is bent so that it appears to originate from the focal point. Ray 2 passes through the center of the lens without changing path. The two rays appear to come from a common point, locating the upright image. This is a case 3 image, which is closer to the lens than the object and smaller in height.

Suppose an object such as a book page is held 7.50 cm from a concave lens of focal length –10.0 cm. Such a lens could be used in eyeglasses to correct pronounced nearsightedness. What magnification is produced? This example is identical to the preceding one, except that the focal length is negative for a concave or diverging lens. The method of solution is thus the same, but the results are different in important ways. To find the magnification m, we must first find the image distance di using thin lens equation 

1di=1f−1do\frac{1}{d_\text{i}}=\frac{1}{f}-\frac{1}{d_{\text{o}}}\\di1=f1do1

, or its alternative rearrangement

di=fdodo−f{d_\text{i}}=\frac{fd_{\text{o}}}{d_{\text{o}}-f}\\di=doffdo

.

We are given that f = –10.0 cm and do = 7.50 cm. Entering these yields a value for

1di\frac{1}{d_{\text{i}}}\\di1

:

1di=1−10.0 cm−17.50 cm=−0.2333cm\displaystyle\frac{1}{d_{\text{i}}}=\frac{1}{-10.0\text{ cm}}-\frac{1}{7.50\text{ cm}}=\frac{-0.2333}{\text{cm}}\\di1=10.0 cm17.50 cm1=cm0.2333

This must be inverted to find di:

di=−cm0.2333=−4.29 cm\displaystyle{d_\text{i}}=-\frac{\text{cm}}{0.2333}=-4.29\text{ cm}\\di=0.2333cm=4.29 cm

Or

di=(7.5)(−10)(7.5−(−10))=−7517.5=−4.29 cm\displaystyle{d}_{\text{i}}=\frac{\left(7.5\right)\left(-10\right)}{\left(7.5-\left(-10\right)\right)}=-\frac{75}{17.5}=-4.29\text{ cm}\\di=(7.5(10))(7.5)(10)=17.575=4.29 cm

Now the magnification equation can be used to find the magnification m, since both di and do are known. Entering their values gives

m=−dido=−−4.29 cm7.50 cm=0.571\displaystyle{m}=-\frac{d_{\text{i}}}{d_{\text{o}}}=-\frac{-4.29\text{ cm}}{7.50\text{ cm}}=0.571\\m=dodi=7.50 cm4.29 cm=0.571

Discussion

A number of results in this example are true of all case 3 images, as well as being consistent with Figure 13. Magnification is positive (as predicted), meaning the image is upright. The magnification is also less than 1, meaning the image is smaller than the object—in this case, a little over half its size. The image distance is negative, meaning the image is on the same side of the lens as the object. (The image is virtual.) The image is closer to the lens than the object, since the image distance is smaller in magnitude than the object distance. The location of the image is not obvious when you look through a concave lens. In fact, since the image is smaller than the object, you may think it is farther away. But the image is closer than the object, a fact that is useful in correcting nearsightedness, as we shall see in a later section.

Table 1 summarizes the three types of images formed by single thin lenses. These are referred to as case 1, 2, and 3 images. Convex (converging) lenses can form either real or virtual images (cases 1 and 2, respectively), whereas concave (diverging) lenses can form only virtual images (always case 3). Real images are always inverted, but they can be either larger or smaller than the object. For example, a slide projector forms an image larger than the slide, whereas a camera makes an image smaller than the object being photographed. Virtual images are always upright and cannot be projected. Virtual images are larger than the object only in case 2, where a convex lens is used. The virtual image produced by a concave lens is always smaller than the object—a case 3 image. We can see and photograph virtual images only by using an additional lens to form a real image.
Table 1. Three Types of Images Formed By Thin Lenses
Type Formed when Image type di m
Case 1 f positive, do>f real positive negative
Case 2 f positive, do<f virtual negative positive m > 1
Case 3 f negative virtual negative positive m < 1
In Image Formation by Mirrors, we shall see that mirrors can form exactly the same types of images as lenses.

Find several lenses and determine whether they are converging or diverging. In general those that are thicker near the edges are diverging and those that are thicker near the center are converging. On a bright sunny day take the converging lenses outside and try focusing the sunlight onto a piece of paper. Determine the focal lengths of the lenses. Be careful because the paper may start to burn, depending on the type of lens you have selected.

Step 1. Examine the situation to determine that image formation by a lens is involved. Step 2. Determine whether ray tracing, the thin lens equations, or both are to be employed. A sketch is very useful even if ray tracing is not specifically required by the problem. Write symbols and values on the sketch. Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns). Step 4. Make alist of what is given or can be inferred from the problem as stated (identify the knowns). It is helpful to determine whether the situation involves a case 1, 2, or 3 image. While these are just names for types of images, they have certain characteristics (given in Table 1) that can be of great use in solving problems. Step 5. If ray tracing is required, use the ray tracing rules listed near the beginning of this section. Step 6. Most quantitative problems require the use of the thin lens equations. These are solved in the usual manner by substituting knowns and solving for unknowns. Several worked examples serve as guides.

Step 7. Check to see if the answer is reasonable: Does it make sense? If you have identified the type of image (case 1, 2, or 3), you should assess whether your answer is consistent with the type of image, magnification, and so on.

We do not realize that light rays are coming from every part of the object, passing through every part of the lens, and all can be used to form the final image. We generally feel the entire lens, or mirror, is needed to form an image. Actually, half a lens will form the same, though a fainter, image.

  • Light rays entering a converging lens parallel to its axis cross one another at a single point on the opposite side.
  • For a converging lens, the focal point is the point at which converging light rays cross; for a diverging lens, the focal point is the point from which diverging light rays appear to originate.
  • The distance from the center of the lens to its focal point is called the focal length f.

    Power P of a lens is defined to be the inverse of its focal length,

    P=1fP=\frac{1}{f}\\P=f1

    . A lens that causes the light rays to bend away from its axis is called a diverging lens. Ray tracing is the technique of graphically determining the paths that light rays take.

    The image in which light rays from one point on the object actually cross at the location of the image and can be projected onto a screen, a piece of film, or the retina of an eye is called a real image.

  • Thin lens equations are

1do+1di=1f\frac{1}{{d}_{\text{o}}}+\frac{1}{{d}_{\text{i}}}=\frac{1}{f}do1+di1=f1

and

hiho=−dido=m\frac{{h}_{\text{i}}}{{h}_{\text{o}}}=-\frac{{d}_{\text{i}}}{{d}_{\text{o}}}=m\\hohi=dodi=m

(magnification).

  • The distance of the image from the center of the lens is called image distance.

    An image that is on the same side of the lens as the object and cannot be projected on a screen is called a virtual image.

  1. It can be argued that a flat piece of glass, such as in a window, is like a lens with an infinite focal length. If so, where does it form an image? That is, how are di and do related?
  2. You can often see a reflection when looking at a sheet of glass, particularly if it is darker on the other side. Explain why you can often see a double image in such circumstances.
  3. When you focus a camera, you adjust the distance of the lens from the film. If the camera lens acts like a thin lens, why can it not be a fixed distance from the film for both near and distant objects?
  4. A thin lens has two focal points, one on either side, at equal distances from its center, and should behave the same for light entering from either side. Look through your eyeglasses (or those of a friend) backward and forward and comment on whether they are thin lenses.
  5. Will the focal length of a lens change when it is submerged in water? Explain.

  1. What is the power in diopters of a camera lens that has a 50.0 mm focal length?
  2. Your camera’s zoom lens has an adjustable focal length ranging from 80.0 to 200 mm. What is its range of powers?
  3. What is the focal length of 1.75 D reading glasses found on the rack in a pharmacy?
  4. You note that your prescription for new eyeglasses is –4.50 D. What will their focal length be?
  5. How far from the lens must the film in a camera be, if the lens has a 35.0 mm focal length and is being used to photograph a flower 75.0 cm away? Explicitly show how you follow the steps in the Problem-Solving Strategy for lenses.
  6. A certain slide projector has a 100 mm focal length lens. (a) How far away is the screen, if a slide is placed 103 mm from the lens and produces a sharp image? (b) If the slide is 24.0 by 36.0 mm, what are the dimensions of the image? Explicitly show how you follow the steps in the Problem-Solving Strategy for Lenses (above).
  7. A doctor examines a mole with a 15.0 cm focal length magnifying glass held 13.5 cm from the mole (a) Where is the image? (b) What is its magnification? (c) How big is the image of a 5.00 mm diameter mole?
  8. How far from a piece of paper must you hold your father’s 2.25 D reading glasses to try to burn a hole in the paper with sunlight?
  9. A camera with a 50.0 mm focal length lens is being used to photograph a person standing 3.00 m away. (a) How far from the lens must the film be? (b) If the film is 36.0 mm high, what fraction of a 1.75 m tall person will fit on it? (c) Discuss how reasonable this seems, based on your experience in taking or posing for photographs.
  10. A camera lens used for taking close-up photographs has a focal length of 22.0 mm. The farthest it can be placed from the film is 33.0 mm. (a) What is the closest object that can be photographed? (b) What is the magnification of this closest object?
  11. Suppose your 50.0 mm focal length camera lens is 51.0 mm away from the film in the camera. (a) How far away is an object that is in focus? (b) What is the height of the object if its image is 2.00 cm high?
  12. (a) What is the focal length of a magnifying glass that produces a magnification of 3.00 when held 5.00 cm from an object, such as a rare coin? (b) Calculate the power of the magnifier in diopters. (c) Discuss how this power compares to those for store-bought reading glasses (typically 1.0 to 4.0 D). Is the magnifier’s power greater, and should it be?
  13. What magnification will be produced by a lens of power –4.00 D (such as might be used to correct myopia) if an object is held 25.0 cm away?
  14. In Example 3, the magnification of a book held 7.50 cm from a 10.0 cm focal length lens was found to be 3.00. (a) Find the magnification for the book when it is held 8.50 cm from the magnifier. (b) Do the same for when it is held 9.50 cm from the magnifier. (c) Comment on the trend in m as the object distance increases as in these two calculations.
  15. Suppose a 200 mm focal length telephoto lens is being used to photograph mountains 10.0 km away. (a) Where is the image? (b) What is the height of the image of a 1000 m high cliff on one of the mountains?
  16. A camera with a 100 mm focal length lens is used to photograph the sun and moon. What is the height of the image of the sun on the film, given the sun is 1.40 × 106 km in diameter and is 1.50 × 108 km away?
  17. Combine thin lens equations to show that the magnification for a thin lens is determined by its focal length and the object distance and is given by

    m=f(f−do)m=\frac{f}{\left(f-d_{\text{o}}\right)}\\m=(fdo)f

    .

converging lens: a convex lens in which light rays that enter it parallel to its axis converge at a single point on the opposite side

diverging lens: a concave lens in which light rays that enter it parallel to its axis bend away (diverge) from its axis

focal point: for a converging lens or mirror, the point at which converging light rays cross; for a diverging lens or mirror, the point from which diverging light rays appear to originate

focal length: distance from the center of a lens or curved mirror to its focal point

magnification: ratio of image height to object height

power: inverse of focal length

real image: image that can be projected

virtual image: image that cannot be projected

2. 5.00 to 12.5 D 4. –0.222 m 6. (a) 3.43 m; (b) 0.800 by 1.20 m 7. (a) −1.35 m (on the object side of the lens); (b) +10.0; (c) 5.00 cm 8. 44.4 cm 10. (a) 6.60 cm; (b) –0.333 12. (a) +7.50 cm; (b) 13.3 D; (c) Much greater 14. (a) +6.67; (b) +20.0; (c) The magnification increases without limit (to infinity) as the object distance increases to the limit of the focal distance. 16. −0.933 mm

CC licensed content, Shared previously


Page 5