What antibiotics treat respiratory infections?

Cephalexin, a semisynthetic cephalosporin antibiotic, has wide clinical application in respiratory infections of children and adults. In pharyngitis and tonsillitis due to beta-haemolytic streptococci, it is comparable to penicillin, cyclocillin, and cephaloglycin, as measured by clinical response, bacteriological cure rate, and incidence of relapse and reinfection. In otitis media, it is effective at dosages of 50-100 mg/kg/day except in those infections caused by Haemophilus influenzae, in which there is failure in 50% of the cases. In other infections of the upper respiratory tract, it appears to be effective except, again, in those caused by H. influenzae. Dosages of 1-2 g/day have been used in adults and 20-100 mg/kg/day in children. Adverse effects, mostly gastrointestinal upsets, rash, and urticaria, have been relatively infrequent and have not required discontinuance of the drug.

1. Chapter 18. Acute lower respiratory infections. ERS White Book. (last accessed 20 February, 2018);210–223. Reference Source [Google Scholar]

2. Greene G, Hood K, Little P, et al.: Towards clinical definitions of lower respiratory tract infection (LRTI) for research and primary care practice in Europe: an international consensus study. Prim Care Respir J. 2011;20(3):299–306, 6 p following 306. 10.4104/pcrj.2011.00034 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. GBD 2015 LRI Collaborators: Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect Dis. 2017;17(11):1133–61. 10.1016/S1473-3099(17)30396-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

4. Review on antimicrobial resistance: Tackling a global health crisis: Initial steps.2015. (last accessed 27 February, 2018). Reference Source [Google Scholar]

5. Brink A, Feldman C, Richards G, et al.: Emergence of extensive drug resistance (XDR) among Gram-negative bacilli in South Africa looms nearer. S Afr Med J. 2008;98(8):586, 588, 590 passim. [PubMed] [Google Scholar]

6. Mission Statement of the South African Antibiotic Stewardship Programme. (last accessed 27 February, 2018). Reference Source [Google Scholar]

7. UK recommendations for combating antimicrobial resistance: a review of ‘antimicrobial stewardship: systems and processes for effective antimicrobial medicine use’. (last accessed 28 February, 2018). Reference Source [PubMed] [Google Scholar]

8. Seemungal T, Harper-Owen R, Bhowmik A, et al.: Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164(9):1618–23. 10.1164/ajrccm.164.9.2105011 [PubMed] [CrossRef] [Google Scholar]

9. Jain S, Self WH, Wunderink RG, et al.: Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. N Engl J Med. 2015;373(5):415–27. 10.1056/NEJMoa1500245 [PMC free article] [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

10. Aabenhus R, Jensen JU, Jørgensen KJ, et al.: Biomarkers as point-of-care tests to guide prescription of antibiotics in patients with acute respiratory infections in primary care. Cochrane Database Syst Rev. 2014; (11):CD010130. 10.1002/14651858.CD010130.pub2 [PubMed] [CrossRef] [Google Scholar]

11. Woodhead M, Blasi F, Ewig S, et al.: Guidelines for the management of adult lower respiratory tract infections--summary. Clin Microbiol Infect. 2011;17 Suppl 6:1–24. 10.1111/j.1469-0691.2011.03602.x [PubMed] [CrossRef] [Google Scholar]

12. Schuetz P, Wirz Y, Sager R, et al.: Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev. 2017;10:CD007498. 10.1002/14651858.CD007498.pub3 [PMC free article] [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

13. Schuetz P, Wirz Y, Sager R, et al.: Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis. 2018;18(1):95–107. 10.1016/S1473-3099(17)30592-3 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

14. Huang DT, Yealy DM, Filbin MR, et al.: Procalcitonin-Guided Use of Antibiotics for Lower Respiratory Tract Infection. N Engl J Med. 2018. 10.1056/NEJMoa1802670 [PMC free article] [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

15. Mandell LA, Wunderink RG, Anzueto A, et al.: Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44 Suppl 2:S27–72. 10.1086/511159 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Boyles TH, Brink A, Calligaro GL, et al.: South African guideline for the management of community-acquired pneumonia in adults. J Thorac Dis. 2017;9(6):1469–502. 10.21037/jtd.2017.05.31 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Woodhead M, Noor M: Empirical antibiotic management of adult CAP. In: Chalmers JD, Pletz MW, Aliberti S, editors. Community-Acquired Pneumonia European Respiratory Society;2014;140–154. 10.1183/1025448x.10004013 [CrossRef] [Google Scholar]

18. Torres A, Blasi F, Peetermans WE, et al.: The aetiology and antibiotic management of community-acquired pneumonia in adults in Europe: a literature review. Eur J Clin Microbiol Infect Dis. 2014;33(7):1065–79. 10.1007/s10096-014-2067-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Pakhale S, Mulpuru S, Verheij TJ, et al.: Antibiotics for community-acquired pneumonia in adult outpatients. Cochrane Database Syst Rev. 2014; (10):CD002109. 10.1002/14651858.CD002109.pub4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Bender MT, Niederman MS: Principles of Antibiotic Management of Community-Acquired Pneumonia. Semin Respir Crit Care Med. 2016;37(6):905–12. 10.1055/s-0036-1592133 [PubMed] [CrossRef] [Google Scholar]

21. Waterer G: Empiric antibiotics for community-acquired pneumonia: A macrolide and a beta-lactam please! Respirology. 2018;23(5):450–1. 10.1111/resp.13248 [PubMed] [CrossRef] [Google Scholar]

22. Garin N, Genné D, Carballo S, et al.: β-Lactam monotherapy vs β-lactam-macrolide combination treatment in moderately severe community-acquired pneumonia: a randomized noninferiority trial. JAMA Intern Med. 2014;174(12):1894–901. 10.1001/jamainternmed.2014.4887 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

23. Postma DF, van Werkhoven CH, van Elden LJ, et al.: Antibiotic treatment strategies for community-acquired pneumonia in adults. N Engl J Med. 2015;372(14):1312–23. 10.1056/NEJMoa1406330 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

24. Okumura J, Shindo Y, Takahashi K, et al.: Mortality in patients with community-onset pneumonia at low risk of drug-resistant pathogens: Impact of β-lactam plus macrolide combination therapy. Respirology. 2018;23(5):526–34. 10.1111/resp.13232 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

25. Gattarello S, Borgatta B, Solé-Violán J, et al.: Decrease in mortality in severe community-acquired pneumococcal pneumonia: impact of improving antibiotic strategies (2000-2013). Chest. 2014;146(1):22–31. 10.1378/chest.13-1531 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

26. Gattarello S, Lagunes L, Vidaur L, et al.: Improvement of antibiotic therapy and ICU survival in severe non-pneumococcal community-acquired pneumonia: a matched case-control study. Crit Care. 2015;19:335. 10.1186/s13054-015-1051-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

27. Rahmel T, Asmussen S, Karlik J, et al.: Moxifloxacin monotherapy versus combination therapy in patients with severe community-acquired pneumonia evoked ARDS. BMC Anesthesiol. 2017;17(1):78. 10.1186/s12871-017-0376-5 [PMC free article] [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

28. Adrie C, Schwebel C, Garrouste-Orgeas M, et al.: Initial use of one or two antibiotics for critically ill patients with community-acquired pneumonia: impact on survival and bacterial resistance. Crit Care. 2013;17(6):R265. 10.1186/cc13095 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Sakamoto Y, Yamauchi Y, Yasunaga H, et al.: Guidelines-concordant empiric antimicrobial therapy and mortality in patients with severe community-acquired pneumonia requiring mechanical ventilation. Respir Investig. 2017;55(1):39–44. 10.1016/j.resinv.2016.08.006 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

30. De la Calle C, Ternavasio-de la Vega HG, Morata L, et al.: Effectiveness of combination therapy versus monotherapy with a third-generation cephalosporin in bacteraemic pneumococcal pneumonia: A propensity score analysis. J Infect. 2018;76(4):342–7. 10.1016/j.jinf.2018.01.003 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

31. Pereira JM, Gonçalves-Pereira J, Ribeiro O, et al.: Impact of antibiotic therapy in severe community-acquired pneumonia: Data from the Infauci study. J Crit Care. 2018;43:183–9. 10.1016/j.jcrc.2017.08.048 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

32. Sligl WI, Asadi L, Eurich DT, et al.: Macrolides and mortality in critically ill patients with community-acquired pneumonia: a systematic review and meta-analysis. Crit Care Med. 2014;42(2):420–32. 10.1097/CCM.0b013e3182a66b9b [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

33. Raz-Pasteur A, Shasha D, Paul M: Fluoroquinolones or macrolides alone versus combined with β-lactams for adults with community-acquired pneumonia: Systematic review and meta-analysis. Int J Antimicrob Agents. 2015;46(3):242–8. 10.1016/j.ijantimicag.2015.04.010 [PubMed] [CrossRef] [Google Scholar]

34. Lee JS, Giesler DL, Gellad WF, et al.: Antibiotic Therapy for Adults Hospitalized With Community-Acquired Pneumonia: A Systematic Review. JAMA. 2016;315(6):593–602. 10.1001/jama.2016.0115 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

35. Horita N, Otsuka T, Haranaga S, et al.: Beta-lactam plus macrolides or beta-lactam alone for community-acquired pneumonia: A systematic review and meta-analysis. Respirology. 2016;21(7):1193–200. 10.1111/resp.12835 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

36. Lee JH, Kim HJ, Kim YH: Is β-Lactam Plus Macrolide More Effective than β-Lactam Plus Fluoroquinolone among Patients with Severe Community-Acquired Pneumonia?: a Systemic Review and Meta-Analysis. J Korean Med Sci. 2017;32(1):77–84. 10.3346/jkms.2017.32.1.77 [PMC free article] [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

37. Brown LA, Mitchell AM, Mitchell TJ: Streptococcus pneumoniae and lytic antibiotic therapy: are we adding insult to injury during invasive pneumococcal disease and sepsis? J Med Microbiol. 2017;66:1253–1256. 10.1099/jmm.0.000545 [PubMed] [CrossRef] [Google Scholar]

38. Metersky ML, Priya A, Mortensen EM, et al.: Association Between the Order of Macrolide and Cephalosporin Treatment and Outcomes of Pneumonia. Open Forum Infect Dis. 2017;4(3): ofx141. 10.1093/ofid/ofx141 [PMC free article] [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

39. Peyrani P, Wiemken TL, Metersky ML, et al.: The order of administration of macrolides and beta-lactams may impact the outcomes of hospitalized patients with community-acquired pneumonia: results from the community-acquired pneumonia organization. Infect Dis (Lond). 2018;50(1):13–20. 10.1080/23744235.2017.1350881 [PubMed] [CrossRef] [Google Scholar]

40. Grossman RF, Hsueh PR, Gillespie SH, et al.: Community-acquired pneumonia and tuberculosis: differential diagnosis and the use of fluoroquinolones. Int J Infect Dis. 2014;18:14–21. 10.1016/j.ijid.2013.09.013 [PubMed] [CrossRef] [Google Scholar]

41. Low DE: Fluoroquinolones for treatment of community-acquired pneumonia and tuberculosis: putting the risk of resistance into perspective. Clin Infect Dis. 2009;48(10):1361–3. 10.1086/598197 [PubMed] [CrossRef] [Google Scholar]

42. Marti C, John G, Genné D, et al.: Time to antibiotics administration and outcome in community-acquired pneumonia: Secondary analysis of a randomized controlled trial. Eur J Intern Med. 2017;43:58–61. 10.1016/j.ejim.2017.06.012 [PubMed] [CrossRef] [Google Scholar]

43. Rello J, Diaz E, Mañez R, et al.: Improved survival among ICU-hospitalized patients with community-acquired pneumonia by unidentified organisms: a multicenter case-control study. Eur J Clin Microbiol Infect Dis. 2017;36(1):123–30. 10.1007/s10096-016-2779-5 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

44. Iroezindu MO, Isiguzo GC, Chima EI, et al.: Predictors of in-hospital mortality and length of stay in community-acquired pneumonia: a 5-year multi-centre case control study of adults in a developing country. Trans R Soc Trop Med Hyg. 2016;110(8):445–55. 10.1093/trstmh/trw057 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

45. Shaddock EJ, Feldman C: Shorter antibiotic courses in community-acquired pneumonia-ready for prime time. J Thorac Dis. 2016;8(12):E1628–E1631. 10.21037/jtd.2016.12.52 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Uranga A, España PP, Bilbao A, et al.: Duration of Antibiotic Treatment in Community-Acquired Pneumonia: A Multicenter Randomized Clinical Trial. JAMA Intern Med. 2016;176(9):1257–65. 10.1001/jamainternmed.2016.3633 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

47. Aliberti S, Ramirez J, Giuliani F, et al.: Individualizing duration of antibiotic therapy in community-acquired pneumonia. Pulm Pharmacol Ther. 2017;45:191–201. 10.1016/j.pupt.2017.06.008 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

48. Pinzone MR, Cacopardo B, Abbo L, et al.: Duration of antimicrobial therapy in community acquired pneumonia: less is more. ScientificWorldJournal. 2014;2014: 759138. 10.1155/2014/759138 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Kaziani K, Sotiriou A, Dimopoulos G: Duration of pneumonia therapy and the role of biomarkers. Curr Opin Infect Dis. 2017;30(2):221–5. 10.1097/QCO.0000000000000351 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

50. Engel MF, Bruns AH, Hulscher ME, et al.: A tailored implementation strategy to reduce the duration of intravenous antibiotic treatment in community-acquired pneumonia: a controlled before-and-after study. Eur J Clin Microbiol Infect Dis. 2014;33(11):1897–908. 10.1007/s10096-014-2158-z [PubMed] [CrossRef] [Google Scholar]

51. Marcos PJ, Restrepo MI, Sanjuàn P, et al.: Community-acquired pneumonia team decreases length of stay in hospitalized, low-risk patients with pneumonia. Hosp Pract (1995). 2013;41(3):7–14. 10.3810/hp.2013.08.1063 [PubMed] [CrossRef] [Google Scholar]

52. Sibila O, Rodrigo-Troyano A, Torres A: Nonantibiotic Adjunctive Therapies for Community-Acquired Pneumonia (Corticosteroids and Beyond): Where Are We with Them? Semin Respir Crit Care Med. 2016;37(6):913–22. 10.1055/s-0036-1593538 [PMC free article] [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

53. Feldman C, Anderson R: Corticosteroids in the adjunctive therapy of community-acquired pneumonia: an appraisal of recent meta-analyses of clinical trials. J Thorac Dis. 2016;8(3):E162–71. 10.21037/jtd.2016.02.43 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Stern A, Skalsky K, Avni T, et al.: Corticosteroids for pneumonia. Cochrane Database Syst Rev. 2017;12:CD007720. 10.1002/14651858.CD007720.pub3 [PMC free article] [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

55. Brink AJ, van Wyk J, Moodley VM, et al.: The role of appropriate diagnostic testing in acute respiratory tract infections: An antibiotic stewardship strategy to minimise diagnostic uncertainty in primary care. S Afr Med J. 2016;106(6):30–7. 10.7196/SAMJ.2016.v106i6.10857 [PubMed] [CrossRef] [Google Scholar]

56. Anthonisen NR, Manfreda J, Warren CP, et al.: Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann Intern Med. 1987;106(2):196–204. 10.7326/0003-4819-106-2-196 [PubMed] [CrossRef] [Google Scholar]

57. Allegra L, Blasi F, de Bernardi B, et al.: Antibiotic treatment and baseline severity of disease in acute exacerbations of chronic bronchitis: a re-evaluation of previously published data of a placebo-controlled randomized study. Pulm Pharmacol Ther. 2001;14(2):149–55. 10.1006/pupt.2001.0289 [PubMed] [CrossRef] [Google Scholar]

58. Daniels JM, Snijders D, de Graaff CS, et al.: Antibiotics in addition to systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;181(2):150–7. 10.1164/rccm.200906-0837OC [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

59. Llor C, Moragas A, Hernández S, et al.: Efficacy of antibiotic therapy for acute exacerbations of mild to moderate chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(8):716–23. 10.1164/rccm.201206-0996OC [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

60. Miravitlles M, Moragas A, Hernández S, et al.: Is it possible to identify exacerbations of mild to moderate COPD that do not require antibiotic treatment? Chest. 2013;144(5):1571–7. 10.1378/chest.13-0518 [PubMed] [CrossRef] [Google Scholar]

61. Lin C, Pang Q: Meta-analysis and systematic review of procalcitonin-guided treatment in acute exacerbation of chronic obstructive pulmonary disease. Clin Respir J. 2018;12(1):10–5. 10.1111/crj.12519 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

62. Ra SW, Kwon YS, Yoon SH, et al.: Sputum bacteriology and clinical response to antibiotics in moderate exacerbation of chronic obstructive pulmonary disease. Clin Respir J. 2018;12(4):1424–32. 10.1111/crj.12671 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

63. Miravitlles M, Murio C, Guerrero T: Factors associated with relapse after ambulatory treatment of acute exacerbations of chronic bronchitis. DAFNE Study Group. Eur Respir J. 2001;17(5):928–33. [PubMed] [Google Scholar]

64. Wilson R, Jones P, Schaberg T, et al.: Antibiotic treatment and factors influencing short and long term outcomes of acute exacerbations of chronic bronchitis. Thorax. 2006;61(4):337–42. 10.1136/thx.2005.045930 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Sethi S, Murphy TF: Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med. 2008;359(22):2355–65. 10.1056/NEJMra0800353 [PubMed] [CrossRef] [Google Scholar]

66. Sharan H: Aerobic Bacteriological Study of Acute Exacerbations of Chronic Obstructive Pulmonary Disease. J Clin Diagn Res. 2015;9(8):DC10–2. 10.7860/JCDR/2015/14515.6367 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Narayanagowda D, Golia S, Jaiswal J, et al.: A bacteriological study of acute exacerbation of chronic obstructive pulmonary disease over a period of one year. Int J Res Med Sci. 2015;3(11):3141–6. 10.18203/2320-6012.ijrms20151152 [CrossRef] [Google Scholar]

68. Kuwal A, Joshi V, Dutt N, et al.: A Prospective Study of Bacteriological Etiology in Hospitalized Acute Exacerbation of COPD Patients: Relationship with Lung Function and Respiratory Failure. Turk Thorac J. 2018;19(1):19–27. 10.5152/TurkThoracJ.2017.17035 [PMC free article] [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

69. Rodrigo-Troyano A, Suarez-Cuartin G, Peiró M, et al.: Pseudomonas aeruginosa resistance patterns and clinical outcomes in hospitalized exacerbations of COPD. Respirology. 2016;21(7):1235–42. 10.1111/resp.12825 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

70. Nakou A, Papaparaskevas J, Diamantea F, et al.: A prospective study on bacterial and atypical etiology of acute exacerbation in chronic obstructive pulmonary disease. Future Microbiol. 2014;9(11):1251–60. 10.2217/fmb.14.90 [PubMed] [CrossRef] [Google Scholar]

71. FDA Drug Safety Communication: FDA updates warnings for oral and injectable fluoroquinolone antibiotics due to disabling side effects. (last accessed 27 February 2018). Reference Source [Google Scholar]

72. Miravitlles M, Soler-Cataluña JJ, Calle M, et al.: Spanish Guidelines for Management of Chronic Obstructive Pulmonary Disease (GesEPOC) 2017. Pharmacological Treatment of Stable Phase. Arch Bronconeumol. 2017;53(6):324–35. 10.1016/j.arbres.2017.03.018 [PubMed] [CrossRef] [Google Scholar]

73. Stolbrink M, Amiry J, Blakey JD: Does antibiotic treatment duration affect the outcomes of exacerbations of asthma and COPD? A systematic review. Chron Respir Dis. 2017; 1479972317745734. 10.1177/1479972317745734 [PMC free article] [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

74. Llewelyn MJ, Fitzpatrick JM, Darwin E, et al.: The antibiotic course has had its day. BMJ. 2017;358:j3418. 10.1136/bmj.j3418 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

75. Falagas ME, Avgeri SG, Matthaiou DK, et al.: Short- versus long-duration antimicrobial treatment for exacerbations of chronic bronchitis: a meta-analysis. J Antimicrob Chemother. 2008;62(3):442–50. 10.1093/jac/dkn201 [PubMed] [CrossRef] [Google Scholar]

76. El Moussaoui R, Roede BM, Speelman P, et al.: Short-course antibiotic treatment in acute exacerbations of chronic bronchitis and COPD: a meta-analysis of double-blind studies. Thorax. 2008;63(5):415–22. 10.1136/thx.2007.090613 [PubMed] [CrossRef] [Google Scholar]

77. Drusano GL: From lead optimization to NDA approval for a new antimicrobial: Use of pre-clinical effect models and pharmacokinetic/pharmacodynamic mathematical modeling. Bioorg Med Chem. 2016;24(24):6401–8. 10.1016/j.bmc.2016.08.034 [PubMed] [CrossRef] [Google Scholar]

78. Drusano GL, Louie A, MacGowan A, et al.: Suppression of Emergence of Resistance in Pathogenic Bacteria: Keeping Our Powder Dry, Part 1. Antimicrob Agents Chemother. 2015;60(3):1183–93. 10.1128/AAC.02177-15 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Lipari M, Smith AL, Kale-Pradhan PB, et al.: Adherence to GOLD Guidelines in the Inpatient COPD Population. J Pharm Pract. 2018;31(1):29–33. 10.1177/0897190017696949 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

80. Dal Negro R, Micheletto C, Tognella S, et al.: Tobramycin Nebulizer Solution in severe COPD patients colonized with Pseudomonas aeruginosa: effects on bronchial inflammation. Adv Ther. 2008;25(10):1019–30. 10.1007/s12325-008-0105-2 [PubMed] [CrossRef] [Google Scholar]

81. Wedzicha JA, Singh R, Mackay AJ: Acute COPD exacerbations. Clin Chest Med. 2014;35(1):157–63. 10.1016/j.ccm.2013.11.001 [PubMed] [CrossRef] [Google Scholar]

82. Yamaya M, Azuma A, Takizawa H, et al.: Macrolide effects on the prevention of COPD exacerbations. Eur Respir J. 2012;40(2):485–94. 10.1183/09031936.00208011 [PubMed] [CrossRef] [Google Scholar]

83. Donath E, Chaudhry A, Hernandez-Aya LF, et al.: A meta-analysis on the prophylactic use of macrolide antibiotics for the prevention of disease exacerbations in patients with Chronic Obstructive Pulmonary Disease. Respir Med. 2013;107(9):1385–92. 10.1016/j.rmed.2013.05.004 [PubMed] [CrossRef] [Google Scholar]

84. Uzun S, Djamin RS, Kluytmans JA, et al.: Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2014;2(5):361–8. 10.1016/S2213-2600(14)70019-0 [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation

85. Parameswaran GI, Sethi S: Long-term macrolide therapy in chronic obstructive pulmonary disease. CMAJ. 2014;186(15):1148–52. 10.1503/cmaj.121573 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Spagnolo P, Fabbri LM, Bush A: Long-term macrolide treatment for chronic respiratory disease. Eur Respir J. 2013;42(1):239–51. 10.1183/09031936.00136712 [PubMed] [CrossRef] [Google Scholar]

87. Simoens S, Laekeman G, Decramer M: Preventing COPD exacerbations with macrolides: a review and budget impact analysis. Respir Med. 2013;107(5):637–48. 10.1016/j.rmed.2012.12.019 [PubMed] [CrossRef] [Google Scholar]

88. Gilchrist SA, Nanni A, Levine O: Benefits and effectiveness of administering pneumococcal polysaccharide vaccine with seasonal influenza vaccine: an approach for policymakers. Am J Public Health. 2012;102(4):596–605. 10.2105/AJPH.2011.300512 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Teo E, Lockhart K, Purchuri SN, et al.: Haemophilus influenzae oral vaccination for preventing acute exacerbations of chronic bronchitis and chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2017;6:CD010010. 10.1002/14651858.CD010010.pub3 [PMC free article] [PubMed] [CrossRef] [Google Scholar] F1000 Recommendation


Page 2

What antibiotics treat respiratory infections?

Recommendations for antibiotic use in non-hospitalized patients with acute exacerbations of chronic obstructive pulmonary disease.

COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; POCT, point-of-care testing. Reproduced with permission from the South African Medical Journal 41.