Se a (- 2 2 eb 0 6 determine quantos números inteiros estão em ba

-AA+A

Questão

(PUC MG) Se A = ]-2;3] e B = [0;5], então os números inteiros que estão em B - A são:

Você precisa de uma conta no Me Salva! para responder exercícios.

A motivação para o estudo das operações entre conjuntos vem da facilidade que elas trazem para a resolução de problemas numéricos do cotidiano. Utilizaremos algumas ferramentas gráficas, como o diagrama de Venn-Euler, para definir as principais operações entre dois ou mais conjuntos, sendo elas: união de conjuntos, intersecção de conjuntos, diferença de conjuntos e conjunto complementar.

União de conjuntos

A união entre dois ou mais conjuntos será um novo conjunto constituído por elementos que pertencem a, pelo menos, um dos conjuntos em questão. Formalmente o conjunto união é dado por:

Sejam A e B dois conjuntos, a união entre eles é formada por elementos que pertencem ao conjunto A ou ao conjunto B.

Em outras palavras, basta unir os elementos de A com os de B.

Exemplo:

a) Considere os conjuntos A = {0, 2, 4, 6, 8, 10} e B = {1, 3, 5, 7, 9, 11}:

A U B = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

b) A = {x | x é um número par natural} e B {y | y é um número ímpar natural}

A união de todos os pares naturais e todos os ímpares naturais resulta em todo o conjunto dos números naturais, logo, temos que:

Intersecção de conjuntos

A intersecção entre dois ou mais conjuntos também será um novo conjunto formado por elementos que pertencem, ao mesmo tempo, a todos os conjuntos envolvidos. Formalmente temos:

Sejam A e B dois conjuntos, a intersecção entre eles é formada por elementos que pertencem ao conjunto A e ao conjunto B. Desse modo, devemos considerar somente os elementos que estão em ambos os conjuntos.

Exemplo

a) Considere os conjuntos A = {1, 2, 3, 4, 5, 6}, B = {0, 2, 4, 6, 8, 10} e C = {0, –1, –2, –3}

A ∩ B = {2, 4, 6}

A ∩ C = { }

B ∩ C = {0}

O conjunto que não possui nenhum elemento é chamado de conjunto vazio e pode ser represento de duas formas.

Leia também: Definição de conjunto

Diferença de conjuntos

A diferença entre dois conjuntos, A e B, é dada pelos elementos que pertencem a A e não pertencem a B.

No diagrama de Venn-Euler, a diferença entre os conjuntos A e B é:

Exemplo

Considere os conjuntos A = {0, 1, 2, 3, 4, 5, 6, 7}, B = {0, 1, 2, 3, 4, 6, 7} e C = { }. Vamos determinar as seguintes diferenças.

A – B = {5}

A – C = {0, 1, 2, 3, 4, 5, 6, 7}

C – A = { }

Observe que, no conjunto A – B, tomamos inicialmente o conjunto A e “tiramos” os elementos do conjunto B. No conjunto A – C, tomamos o A e “tiramos” o vazio, ou seja, nenhum elemento. Por último, em C – A, tomamos o conjunto vazio e “tiramos” os elementos de A, que, por sua vez, já não estavam lá.

Leia também: Notações importantes sobre conjuntos

Conjuntos complementares

Considere os conjuntos A e B, em que o conjunto A está contido no conjunto B, isto é, todo elemento de A também é elemento de B. A diferença entre os conjuntos, B – A, é chamada de complementar de A em relação a B. Em outras palavras, o complementar é formado por todo elemento que não pertence ao conjunto A em relação ao conjunto B, em que ele está contido.

Exemplo

Considere os conjuntos A = {0, 1, 2, 3, 4, 5} e B ={0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

O complementar de A em relação a B é:

Exercícios resolvidos

Questão 1 – Considere os conjuntos A = {a, b, c, d, e, f} e B ={d, e, f, g, h, i}. Determine (A – B) U (B – A).

Solução

Inicialmente determinaremos os conjuntos A – B e B – A e, em seguida, realizaremos a união entre eles.

A – B = {a, b, c, d, e, f} – {d, e, f, g, h, i}

A – B = {a, b, c}

B – A = {d, e, f, g, h, i} – {a, b, c, d, e, f}

B – A = {g, h, i}

Logo, (A – B) U (B – A) é:

{a, b, c} U {g, h, i}

{a, b, c, g, h, i}

Questão 2 – (Vunesp) Suponhamos que A U B = {a, b, c, d, e, f, g, h}, A ∩ B = {d, e} e A – B = {a, b, c}, então:

a) B = {f, g, h}

b) B = {d, e, f, g, h}

c) B = { }

d) B = {d, e}

e) B = {a, b, c, d, e}

Solução

Alternativa b.

Dispondo os elementos no diagrama de Venn-Euler, segundo o enunciado, temos:

Portanto, o conjunto B = {d, e, f, g, h}.

Por Robson Luiz
Professor de Matemática

O diagrama de Venn, também conhecido como diagrama de Venn-Euler, é uma maneira de representar graficamente um conjunto, para isso utilizamos uma linha fechada que não possui auto-intersecção e representamos os elementos do conjunto no interior dessa linha. A ideia do diagrama é facilitar o entendimento nas operações básicas de conjuntos, como: relação inclusão e pertinência, união e intersecção, diferença e conjunto complementar.

Leia também: Operações entre números inteiros: conheça as propriedades

Representações do diagrama de Venn

Como apresentado, o diagrama de Venn consiste em uma linha fechada (que não se entrelaça) na qual “colocamos” os elementos do conjunto em questão, logo, podemos representar um ou vários conjuntos de maneira simultânea. Veja os exemplos:

• Conjunto único

Podemos representá-lo utilizando uma única linha fechada, por exemplo, vamos representar o conjunto A = {1, 3, 5, 7, 9}:

• Entre dois conjuntos

Devemos fazer dois gráficos como o da representação do conjunto único. Entretanto, das operações com conjuntos sabemos que: dado dois conjuntos, eles podem ter intersecção ou não. Caso os dois conjuntos não possuam intersecção, eles recebem o nome de conjuntos disjuntos.

Exemplo 1

Represente, utilizando o diagrama de Venn, os conjuntos A = {a, b, c, d, e, f} e B = {d, e f, g, h, i}.

Observe que a intersecção é a parte do diagrama que pertence aos dois conjuntos, assim como na definição.

A ∩ B = {d, e, f}

Exemplo 2

Represente os conjuntos C = {a, b, c, d}e D = {e, f, g, h}.

Observe que a intersecção desses conjuntos é vazia, pois não possui nenhum elemento que pertença simultaneamente a ambos, ou seja:

C ∩ D = { }

• Entre três conjuntos

A ideia por trás da representação utilizando o diagrama de Venn para três conjuntos é semelhante à da representação entre dois conjuntos. Nesse sentido, os conjuntos podem ser disjuntos um a um, isto é, não possuem nenhuma intersecção; ou podem ser disjuntos dois a dois, ou seja, somente dois deles possuem intersecção; ou todos possuem intersecção.

Exemplo

Representação, utilizando o diagrama de Venn, dos conjuntos A = {a, b, c, d}, B = {d, e, f, g} e C = {d, e, c, h}.

Veja também: Notações importantes sobre conjunto

Relação de pertinência

A relação de pertinência permite-nos dizer se um elemento pertence ou não a determinado conjunto. Para isso, utilizamos os símbolos:

Considere o conjunto A = {a, b, c, d}. Analisando-o, percebemos que g, por exemplo, não pertence a ele, assim, no diagrama de Venn, temos:

Relação de inclusão

A relação de inclusão permite-nos dizer se um conjunto está contido ou não em outro conjunto. Quando um conjunto está contido em outro, dizemos que se trata de um subconjunto. Para isso utilizamos os símbolos:

Um exemplo disso é a relação entre conjunto dos números naturais e conjunto dos números inteiros. Sabemos que o conjunto dos números naturais é subconjunto do conjunto dos números inteiros, isto é, o conjunto dos naturais está contido no conjunto dos inteiros.

Operações entre conjuntos

As operações básicas entre dois ou mais conjuntos são: união, intersecção e diferença entre dois conjuntos.

• União

A união entre dois conjuntos é formada pela junção dos elementos contidos em cada conjunto, em outras palavras: considera-se todos os elementos dos dois conjuntos. Veja:

Considere os conjuntos A = {1, 2, 3, 4} e B = {3, 4, 5, 6, 7}. A união entre eles é dada por:

A U B = {1, 2, 3, 4, 5, 6, 7}
 

No diagrama de Venn, sombreamos a parte da união, isto é, ambos os conjuntos, confira:

• Intersecção

A intersecção é um novo conjunto numérico formado por elementos que pertencem, de maneira simultânea, a outros conjuntos. De modo geral, a intersecção entre conjuntos no diagrama de Venn é dada pela parte comum aos gráficos envolvidos. Veja:

Considerando novamente os conjuntos A = {1, 2, 3, 4} e B = {3, 4, 5, 6, 7}, temos que os elementos que pertencem ao conjunto A e ao conjunto B, simultaneamente, são:

A ∩ B = {3, 4}

• Diferença entre dois conjuntos

Considere dois conjuntos C e D, a diferença entre eles (C – D) será um novo conjunto formado por elementos que pertencem a C e não pertencem a D. De modo geral, podemos representar essa diferença, utilizando o diagrama de Venn, da seguinte maneira:

Exercícios resolvidos

Questão 1 – (Ufal) Na figura a seguir, têm-se representados os conjuntos A, B e C não disjuntos. A região colorida representa o conjunto:

a) C – (A ∩ B)

b) (A ∩ B) – C

c) (A U B) – C

d) A U B U C

e) A ∩ B ∩ C

Solução

Alternativa b.

Lembrando das operações com conjuntos, sabemos que a intersecção entre dois conjuntos, no diagrama de Venn, é dada pela parte comum a eles. Considerando os conjuntos A, B e C e colorindo o conjunto intersecção A ∩ B, temos:

Título: Solução questão1 – parte 1

Observe que, se tirarmos os elementos do conjunto C, obtemos a parte colorida pedida pelo exercício, ou seja, devemos destacar a intersecção inicialmente e depois retirar os elementos de C.

(A ∩ B) – C

Questão 2 – (Uerj) Crianças de uma escola participaram de uma campanha de vacinação contra a paralisia infantil e o sarampo. Após a campanha, verificou-se que 80% das crianças receberam a vacina contra paralisia, 90% receberam a vacina contra o sarampo, e 5% não receberam nem uma nem outra.

Determine o percentual de crianças dessa escola que receberam as duas vacinas.

Solução

Como é desconhecido o percentual das crianças que tomaram as duas vacinas, vamos inicialmente chamá-lo de x. Lembre-se de que não devemos operar com o símbolo %, e sim escrevermos os percentuais do exercício em sua forma decimal ou fracionária.

80 % → 0,8

90% → 0,9

5% → 0,05

100% → 1

Para descobrirmos o total de crianças que tomaram somente a vacina contra paralisia, subtraímos a porcentagem verificada (80%) da porcentagem das que tomaram as duas (x), e o mesmo deve ser feito para as crianças que tomaram somente a vacina contra o sarampo. Assim:

Juntando todas as crianças, o percentual será de 100%, logo:

0,9 – x + x + 0,8 – x + 0,05 = 1

1,75 – x = 1

– x = 1 – 1,75

(–1) · – x = – 0,75 · (–1)

x = 0,75

x = 75%

Portanto, 75% das crianças da escola tomaram as duas vacinas. 

Por L.do Robson Luiz

Professor de Matemática