Is radius of Earth decreased by 10% is the mass remaining unchanged What will happen to the acceleration due to gravity?

  • Correct Answer: D

    Solution :

    [d] \[g=\frac{GM}{{{R}^{2}}}\]                                (i) \[g'=\frac{Gm}{{{\left( \frac{90}{100}R \right)}^{2}}}=\frac{100}{81}-\frac{GM}{{{R}^{2}}}\]           (ii) From Eqs. (i) and (ii), \[g'=\frac{100}{81}g\Rightarrow \frac{g'}{g}=\frac{100}{81}\] \[\frac{g'}{g}-1=\frac{100}{81}-1\] \[\therefore \Delta g=\frac{19}{81}g=23%\]of g. So increase is more then 19% of g.

warning Report Error

Page 2

  • Correct Answer: C

    Solution :

    [a] \[\Delta l=\frac{FL}{AY}\] \[\frac{{{(\Delta l)}_{A}}}{{{(\Delta l)}_{B}}}=\left( \frac{{{F}_{A}}}{{{F}_{B}}} \right)\left( \frac{{{L}_{A}}}{{{L}_{B}}} \right)\left( \frac{{{A}_{B}}}{{{A}_{A}}} \right)\left( \frac{{{Y}_{B}}}{{{Y}_{A}}} \right)\] \[=\left( \frac{KM}{3M} \right)(r){{\left( \frac{1}{2r} \right)}^{2}}\left( \frac{1}{3r} \right)=\frac{K}{36{{r}^{2}}}=\frac{1}{6{{r}^{2}}}\](given) K=6 Mass of block P=6M

warning Report Error

Page 3

  • Correct Answer: A

    Solution :

    [a] \[Y=\frac{F/a}{\Delta l/l}=\frac{Fl}{a\Delta l}\] Or \[Y=\frac{Fl\times 4}{\pi {{D}^{2}}\times \Delta l}\] or \[\Delta l\propto \frac{1}{{{D}^{2}}}\]or \[\frac{\Delta {{l}_{2}}}{\Delta {{l}_{1}}}=\frac{{{D}_{1}}^{2}}{{{D}_{2}}^{2}}=\frac{{{n}^{1}}}{1}\]

warning Report Error

Page 4

  • Correct Answer: A

    Solution :

    [a] \[l\propto \frac{1}{Y}\Rightarrow \frac{{{Y}_{s}}}{{{Y}_{c}}}=\frac{{{l}_{c}}}{{{l}_{s}}}\Rightarrow \frac{{{l}_{c}}}{{{l}_{s}}}=\frac{2\times {{10}^{11}}}{1.2\times {{10}^{11}}}=\frac{5}{3}\](i) Also \[{{l}_{c}}-{{l}_{s}}=0.5\]                                                (ii) On solving (i) and (ii), we get \[{{l}_{c}}=0.5\]cm and \[{{l}_{s}}=0.75\]cm

warning Report Error

Page 5

  • Correct Answer: D

    Solution :

    [d] \[\eta =\frac{F/A}{x/L}\Rightarrow x=\frac{L}{\eta }\times \frac{F}{A}\] In \[\eta \]and F are constant, then \[x\propto \frac{L}{A}\] For maximum displacement, area at which force applied should be minimum and vertical side should be maximum. This is given in the R position of rectangular block.

warning Report Error

Page 6

  • Correct Answer: B

    Solution :

    [b] Let L be the original length of the wire and K be the force constant of wire. Final length = initial length + Elongation \[L'=L+\frac{F}{K}\] For first condition \[a=L+\frac{4}{K}\]                 (i) For second condition \[b=L+\frac{5}{K}\]                        (ii) By solving equations (i) and (ii), we get \[L=5a-4b\] and \[K=\frac{1}{b-a}\] Now when the longitudinal tension is 9 N, length of the string \[=L+\frac{9}{K}=5a-4b+9(b-a)-5b-4a.\]

warning Report Error

Page 7

  • Correct Answer: C

    Solution :

    [c] \[dF=G\frac{Mdm}{4{{r}^{2}}}\]  \[F=\Sigma dF\cos \theta \] \[=\Sigma \frac{GMdm}{4{{r}^{2}}}\cos \theta \] \[=\frac{GM}{4{{r}^{2}}}\times \frac{\sqrt{3r}}{2r}\Sigma dm\] \[=\frac{\sqrt{3}GMm}{8{{r}^{2}}}\] Alternative solution: The gravitational field due to the ring at a distance \[E=\frac{Gm(\sqrt{3r})}{{{[{{r}^{2}}+{{(\sqrt{3}r)}^{2}}]}^{3/2}}}\]or E=\[\frac{\sqrt{3}Gm}{8{{r}^{2}}}\] The required force is EM, i.e., \[(\sqrt{3}Gm)M/8{{r}^{2}}\].

warning Report Error

Page 8

  • Correct Answer: D

    Solution :

    [d] we will be thrown into space, if weight mg is equal to gravitational force duet to the planet. If y is the closest distance. \[\frac{GMm}{{{R}^{2}}}=mg=\frac{G(KM)m}{{{(K'R+y)}^{2}}}\] \[{{(K'R+y)}^{2}}=\frac{KGM}{g}\] \[y={{\left( \frac{KGM}{g} \right)}^{1/2}}-K'R\]

warning Report Error

Page 9

  • Correct Answer: B

    Solution :

    [b] \[{{T}_{O}}=\frac{2\pi r}{\omega }\]         \[{{T}_{I}}=\frac{2\pi r}{2\omega }=\frac{{{T}_{O}}}{2}\] Consider an imaginary comet moving along an ellipse. The extreme points of this ellipse are located on orbit of inner planet and the star. Semimajor axis of orbit of such comet will be half of the semi-major axis of the inner planet's orbit. According to Kepler's law, if T is the time period of the comet. \[\frac{T{{'}^{2}}}{{{(r/4)}^{3}}}=\frac{{{T}^{2}}_{I}}{{{(r/2)}^{3}}}\] \[T{{'}^{2}}=\frac{8}{64}{{T}^{2}}_{I}=\frac{{{T}^{2}}_{0}}{32}\]         \[(\because {{T}_{1}}={{T}_{0}}/2)\] \[T'=\frac{T}{4\sqrt{2}}\] (T'/2) represents time in which inner planet will fall into star. \[\left( \frac{T'}{2} \right)=\frac{T}{8\sqrt{2}}=\frac{T\sqrt{2}}{16}\]

warning Report Error

Page 10

  • Correct Answer: C

    Solution :

    [c] \[{{T}_{west}}=\frac{2\pi R}{{{v}_{0}}+R\omega }\] and \[{{T}_{east}}=\frac{2\pi R}{{{v}_{0}}-R\omega }\Rightarrow \Delta T={{T}_{east}}\] \[\Rightarrow {{T}_{east}}-{{T}_{west}}=2\pi R\left[ \frac{2\pi R}{{{v}^{2}}_{0}-{{R}^{2}}{{\omega }^{2}}} \right]=\frac{4\pi \omega {{R}^{2}}}{{{v}_{0}}^{2}-{{R}^{2}}{{\omega }^{2}}}\]

warning Report Error

Page 11

  • Correct Answer: B

    Solution :

    [b] Net force on any one particle \[=\frac{G{{M}^{2}}}{{{(2R)}^{2}}}+\frac{G{{M}^{2}}}{{{(R\sqrt{2})}^{2}}}\cos 45{}^\circ +\frac{G{{M}^{2}}}{{{(R\sqrt{2})}^{2}}}\cos 45{}^\circ \] \[=\frac{G{{M}^{2}}}{{{R}^{2}}}\left[ \frac{1}{4}+\frac{1}{\sqrt{{}}} \right]\] This force will be equal to centripetal force so \[\frac{M{{u}^{2}}}{R}=\frac{G{{M}^{2}}}{{{R}^{2}}}\left[ \frac{1+2\sqrt{2}}{4} \right]\] \[u=\sqrt{\frac{GM}{R}[1+2\sqrt{2}]}\] \[=\frac{1}{2}\sqrt{\frac{GM}{R}(2\sqrt{2}+1)}\]

warning Report Error

Page 12

  • Correct Answer: B

    Solution :

    [b] As gravitational force is a conservative force, work done is independent of path. \[\therefore {{W}_{1}}={{W}_{2}}={{W}_{3}}\]

warning Report Error

Page 13

  • Correct Answer: C

    Solution :

    [c]
    \[\frac{G{{M}_{1}}}{{{x}^{2}}}=\frac{G{{M}_{2}}}{{{(R-x)}^{2}}}\] or \[\frac{{{M}_{2}}}{{{M}_{1}}}{{x}^{2}}={{R}^{2}}+{{x}^{2}}-2Rx\] Let \[\frac{{{M}_{2}}}{M}=k\] \[{{x}^{2}}(k-1)+2Rx-{{R}^{2}}=0\] \[x=-\frac{2R+\sqrt{4{{R}^{2}}+4(k-1){{R}^{2}}}}{2(k-1)}=\frac{R\sqrt{{{M}_{1}}}}{\sqrt{{{M}_{1}}}+\sqrt{{{M}_{2}}}}\] \[R-x=\frac{R\sqrt{{{M}_{2}}}}{\sqrt{{{M}_{1}}}+\sqrt{{{M}_{2}}}}\] Gravitational potential at point P is \[-\left( \frac{G{{M}_{1}}}{x}+\frac{G{{M}_{2}}}{R-x} \right)\] \[=-\left[ \frac{G{{M}_{1}}(\sqrt{{{M}_{1}}}+\sqrt{{{M}_{2}}})}{R\sqrt{{{M}_{1}}}}+\frac{G{{M}_{2}}(\sqrt{{{M}_{1}}}+\sqrt{{{M}_{2}}})}{R\sqrt{{{M}_{2}}}} \right]\] \[=-\left[ \frac{G(\sqrt{{{M}_{2}}}+\sqrt{{{M}_{1}}})}{R}(\sqrt{{{M}_{1}}}+\sqrt{{{M}_{2}}}) \right]\] \[=-\frac{G{{(\sqrt{{{M}_{1}}}+\sqrt{{{M}_{2}}})}^{2}}}{R}\]

warning Report Error

Page 14

warning Report Error

Page 15

warning Report Error

Page 16

warning Report Error

Page 17

warning Report Error

Page 18

warning Report Error

Última postagem

Tag