How does epigenetics explain the weaving together of genes and experience in intelligence

What role do genetic and environmental influences play in determining intelligence? This question has been one of the most controversial topics throughout the history of psychology and remains a hot topic of debate to this day.

In addition to disagreements about the basic nature of intelligence, psychologists have spent a great amount of time and energy debating the various influences on individual intelligence. The debate focuses on one of the major questions in psychology: Which is more important—nature or nurture?

Today, psychologists recognize that both genetics and the environment play a role in determining intelligence.

It now becomes a matter of determining exactly how much of an influence each factor has.

Twin studies suggest that the variance in IQ is linked to genetics. This research suggests that genetics may play a larger role than environmental factors in determining individual IQ.

One important thing to note about the genetics of intelligence is that it is not controlled by a single "intelligence gene." Instead, it is the result of complex interactions between many genes. Next, it is important to note that genetics and the environment interact to determine exactly how inherited genes are expressed.

For example, if a person has tall parents, it is likely that the individual will also grow to be tall. However, the exact height the person reaches can be influenced by environmental factors such as nutrition and disease.

A child may be born with genes for brightness, but if that child grows up in a deprived environment where he is malnourished and lacks access to educational opportunities, he may not score well on measures of IQ.

  • Studies show that IQ scores of identical twins may be more similar than those of fraternal twins.
  • Siblings who were raised together in the same environment have more similar IQs than those of adopted children who were brought up in the same household.

In addition to inherited characteristics, other biological factors such as maternal age, prenatal exposure to harmful substances, and prenatal malnutrition may also influence intelligence.

Studies have found that people with lower intelligence are more likely to report criminal victimization, which can have serious consequences including physical injury, loss of property, and psychological and emotional trauma.

  • Identical twins who were raised separately have less similar IQs than those of identical twins who grew up in the same household.
  • School attendance has an impact on IQ scores .
  • Children who breastfed for 12 months or longer had a higher IQ (about 3.7 points) at age 30.

So what are some of the environmental influences that can account for variances in intelligence?

For example, studies have found that first-born children tend to have higher IQs than later-born siblings.

Why? Many experts believe that this is because first-born children receive more attention from parents. Research also suggests that parents expect older children to perform better on a variety of tasks, whereas later-born siblings face lesser task-focused expectations.

Verywell Mind uses only high-quality sources, including peer-reviewed studies, to support the facts within our articles. Read our editorial process to learn more about how we fact-check and keep our content accurate, reliable, and trustworthy.

  1. Plomin R, von Stumm S. The new genetics of intelligence. Nat Rev Genet. 2018;19(3):148-159. doi:10.1038/nrg.2017.104

  2. Zheng Y, Rijsdijk F, Arden R. Differential environmental influences on the development of cognitive abilities during childhood. Intelligence. 2018;66:72-78. doi:10.1016/j.intell.2017.11.005

  3. Boutwell BB, Connolly EJ, Barbaro N, Shackelford TK, Petkovsek M, Beaver KM. On the genetic and environmental reasons why intelligence correlates with criminal victimization. Intelligence. 2017;62:155-166. doi:10.1016/j.intell.2017.04.003

  4. Oommen A. Factors influencing intelligence quotient. JNSK. 2014;1(4). doi:10.15406/jnsk.2014.01.00023

  5. Ritchie SJ, Tucker-Drob EM. How much does education improve intelligence? A meta-analysis. Psychol Sci. 2018;29(8):1358-1369. doi:10.1177/0956797618774253

  6. Horta BL, Hartwig FP, Victora CG. Breastfeeding and intelligence in adulthood: due to genetic confounding? The Lancet Global Health. 2018;6(12):e1276-e1277. doi:10.1016/S2214-109X(18)30371-1

  7. Lehmann J-YK, Nuevo-Chiquero A, Vidal-Fernandez M. The early origins of birth order differences in children’s outcomes and parental behavior. J Human Resources. 2018;53(1):123-156. doi:10.3368/jhr.53.1.0816-8177

Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U., & Zoghbi, H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 23, 185188.CrossRefGoogle ScholarPubMed

Anokhin, K. V., & Rose, S. P. (1991). Learning-induced increase of immediate early gene messenger RNA in the chick forebrain. European Journal of Neuroscience, 3, 162167.CrossRefGoogle ScholarPubMed

Ba, Y., Yu, H., Liu, F., Geng, X., Zhu, C., Zhu, Q., et al. (2011). Relationship of folate, vitamin B12 and methylation of insulin-like growth factor-II in maternal and cord blood. European Journal of Clinical Nutrition, 65, 480485. https://doi.org/10.1038/ejcn.2010.294CrossRefGoogle ScholarPubMed

Benyamin, B., Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M. J., et al. (2014). Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Molecular Psychiatry, 19, 253258. https://doi.org/10.1038/mp.2012.184CrossRefGoogle ScholarPubMed

Bhate, V., Deshpande, S., Bhat, D., Joshi, N., Ladkat, R., Watve, S., et al. (2008). Vitamin B12 status of pregnant Indian women and cognitive function in their 9-year-old children. Food and Nutrition Bulletin, 29, 249254. https://doi.org/10.1177/156482650802900401CrossRefGoogle ScholarPubMed

Blalock, E. M., Geddes, J. W., Chen, K. C., Porter, N. M., Markesbery, W. R., et al. (2004). Incipient Alzheimer’s disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proceedings of the National Academy of Sciences, 101, 21732178. https://doi.org/10.1073/pnas.0308512100CrossRefGoogle ScholarPubMed

Boyes, J., & Bird, A. P. (1992). Repression of genes by DNA methylation depends on CpG density and promoter strength: Evidence for involvement of a methyl-CpG binding protein. EMBO Journal, 11, 327333.CrossRefGoogle ScholarPubMed

Brennan, P. A., Hancock, D., & Keverne, E. B. (1992). The expression of the immediate-early genes c-fos, egr-1 and c-jun in the accessory olfactory bulb during the formation of an olfactory memory in mice. Neuroscience, 49, 277284.CrossRefGoogle ScholarPubMed

Burgaleta, M., MacDonald, P. A., Martínez, K., Román, F. J., Álvarez-Linera, J., González, A. R., et al. (2014). Subcortical regional morphology correlates with fluid and spatial intelligence. Human Brain Mapping, 35, 19571968. https://doi.org/10.1002/hbm.22305CrossRefGoogle ScholarPubMed

Butcher, L. M., Kennedy, J. K., & Plomin, R. (2006). Generalist genes and cognitive neuroscience. Current Opinion in Neurobiology, 16, 145151.CrossRefGoogle ScholarPubMed

Butcher, L. M., Meaburn, E., Knight, J., Sham, P. C., Schalkwyk, L. C., Craig, I. W., et al. (2005). SNPs, microarrays, and pooled DNA: Identification of four loci associated with mild mental impairment in a sample of 6,000 children. Human Molecular Genetics, 14, 13151325.CrossRefGoogle Scholar

Caramaschi, D., Sharp, G. C., Nohr, E. A., Berryman, K., Lewis, S. J., Davey Smith, G., et al. (2017). Exploring a causal role of DNA methylation in the relationship between maternal vitamin B12 during pregnancy and child’s IQ at age 8, cognitive performance and educational attainment: A two-step Mendelian randomization study. Human Molecular Genetics, 26, 30013013. https://doi.org/10.1093/hmg/ddx164CrossRefGoogle ScholarPubMed

Chen, Z. J., & Pikaard, C. S. (1997). Epigenetic silencing of RNA polymerase I transcription: A role for DNA methylation and histone modification in nucleolar dominance. Genes and Development, 11, 21242136.CrossRefGoogle ScholarPubMed

Costa, R. M., Honjo, T., & Silva, A. J. (2003). Learning and memory deficits in Notch mutant mice. Current Biology, 13(15), 13481354.CrossRefGoogle ScholarPubMed

Davies, G., Armstrong, N., Bis, J. C., Bressler, J., Chouraki, V., Giddaluru, S., et al. (2015). Genetic contributions to variation in general cognitive function: A meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 949). Molecular Psychiatry, 20, 183192. https://doi.org/10.1038/mp.2014.188CrossRefGoogle Scholar

Davies, G., Lam, M., Harris, S. E., Trampush, J. W., Luciano, M., Hill, W. D., et al. (2018). Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 9(1), 2098. https://doi.org/10.1038/s41467-018-04362-xCrossRefGoogle ScholarPubMed

Davies, G., Marioni, R. E., Liewald, D. C., Hill, W. D., Hagenaars, S. P., Harris, S. E., et al. (2016). Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151). Molecular Psychiatry, 21, 758767. https://doi.org/10.1038/mp.2016.45CrossRefGoogle Scholar

Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., et al. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16, 9961005. https://doi.org/10.1038/mp.2011.85CrossRefGoogle ScholarPubMed

Davis, O. S., Butcher, L. M., Docherty, S. J., Meaburn, E. L., Curtis, C. J., Simpson, M. A., et al. (2010). A three-stage genome-wide association study of general cognitive ability: Hunting the small effects. Behavior Genetics, 40, 759767.CrossRefGoogle ScholarPubMed

Day, J. J., Childs, D., Guzman-Karlsson, M. C., Kibe, M., & Moulden, J. (2013). DNA methylation regulates associative reward learning. Nature Neuroscience, 16, 14451452.CrossRefGoogle ScholarPubMed

Deserno, L., Huys, Q. J. M., Boehme, R., Buchert, R., Heinze, H.-J., Grace, A. A., et al. (2015). Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proceedings of the National Academy of Sciences, 112(5), 15951600. https://doi.org/10.1073/pnas.1417219112CrossRefGoogle ScholarPubMed

Du, Y., Ninga, Y., Wena, Y., Liua, L., Lianga, X., Lia, P., et al. (2018). A genome-wide pathway enrichment analysis identifies brain region related biological pathways associated with intelligence. Psychiatry Research, 268, 238242. https://doi.org/10.1016/j.psychres.2018.07.029CrossRefGoogle ScholarPubMed

Eden, S., Hashimshony, T., Keshet, I., Cedar, H., & Thorne, A. W. (1998). DNA methylation models histone acetylation. Nature, 394, 842. https://doi.org/10.1038/29680CrossRefGoogle ScholarPubMed

Feng, J., Zhou, Y., Campbell, S. L., Le, T., Li, E., Sweatt, J. D., et al. (2010). Dnmt1 and Dnmt3a are required for the maintenance of DNA methylation and synaptic function in adult forebrain neurons. Nature Neuroscience, 13, 423430.CrossRefGoogle Scholar

Galton, F. (1869). Hereditary genius: An inquiry into its laws and consequences. London: Macmillan and Co.CrossRefGoogle Scholar

Gardner, H. (2006). Multiple intelligences: New horizons in theory and practice. New York: Basic Books.Google Scholar

Glenn, C. C., Deng, G., Michaelis, R. C., Tarleton, J., Phelan, M. C., Surh, L., et al. (2000). DNA methylation analysis with respect to prenatal diagnosis of the Angelman and Prader-Willi syndromes and imprinting. Prenatal Diagnosis, 20, 300306.3.0.CO;2-A>CrossRefGoogle ScholarPubMed

Gomes, M. V. M., Toffoli, L. V., Arruda, D. W., Soldera, L. M., Pelosi, G. G., Neves-Souza, R. D., et al. (2012). Age-related changes in the global DNA methylation profile of leukocytes are linked to nutrition but are not associated with the MTHFR C677T genotype or to functional capacities. PLoS One, 7, e52570. https://doi.org/10.1371/journal.pone.0052570CrossRefGoogle Scholar

Gould, S. J. (1981). The mismeasure of man. New York: Norton.Google Scholar

Grazioplene, R. G., Ryman, S. G., Gray, J. R., Rustichini, A., Jung, R. E., & DeYoung, C. G. (2015). Subcortical intelligence: Caudate volume predicts IQ in healthy adults. Human Brain Mapping, 36, 14071416. https://doi.org/10.1002/hbm.22710CrossRefGoogle ScholarPubMed

Grigorenko, E. L., Compton, D., Fuchs, L., Wagner, R., Wilcutt, E., Fletcher, J. M. (2019) Understanding, educating, and supporting children with specific learning disabilities: 50 years of science and practice. American Psychologist. https://doi.org/10.1002/cad.20290CrossRef

Heyn, H., Li, N., Ferreira, H. J., Moran, S., Pisano, D. G., Gomez, A., et al. (2012). Distinct DNA methylomes of newborns and centenarians. Proceedings of the National Academy of Sciences, 109, 1052210527. https://doi.org/10.1073/pnas.1120658109CrossRefGoogle ScholarPubMed

Hill, W. D., Marioni, R. E., Maghzian, O., Ritchie, S. J., Hagenaars, S. P., McIntosh, A. M., et al. (2018). A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Molecular Psychiatry, 24, 169181. https://doi.org/10.1038/s41380-017-0001-5CrossRefGoogle Scholar

Holm, V. A., Cassidy, S. B., Butler, M. G., Hanchett, J. M., Greenswag, L. R., Whitman, B. Y., & Greenberg, F. (1993). Prader-Willi syndrome: Consensus diagnostic criteria. Pediatrics, 91, 398402.Google ScholarPubMed

Hsieh, C. L. (1994). Dependence of transcriptional repression on CpG methylation density. Molecular and Cellular Biology, 14(8), 54875494.CrossRefGoogle ScholarPubMed

Jones, P. L., Veenstra, G. J., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., et al. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genetics, 19, 187191. https://doi.org/10.1038/561CrossRefGoogle ScholarPubMed

Kaminski, J. A., Schlagenhauf, F., Rapp, M., Awasthi, S., Ruggeri, B., Deserno, L., et al. (2018). Epigenetic variance in dopamine D2 receptor: A marker of IQ malleability? Translational Psychiatry, 8, 169.https://doi.org/10.1038/s41398-018-0222-7CrossRefGoogle ScholarPubMed

Karama, S., Bastin, M. E., Murray, C., Royle, N. A., Penke, L., Muñoz Maniega, S., et al. (2013). Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age. Molecular Psychiatry, 19, 555559. https://doi.org/10.1038/mp.2013.64CrossRefGoogle ScholarPubMed

Kirkpatrick, R. M., McGue, M., Iacono, W. G., Miller, M. B., & Basu, S. (2014). Results of a “GWAS Plus”: General cognitive ability is substantially heritable and massively polygenic. PLoS One, 9(11), e112390. https://doi.org/10.1371/journal.pone.0112390CrossRefGoogle ScholarPubMed

Laan, L. A., Haeringen, A., & Brouwer, O. F. (1999). Angelman syndrome: A review of clinical and genetic aspects. Clinical Neurology and Neurosurgery, 101, 161170.CrossRefGoogle ScholarPubMed

Lee, D. Y., Hayes, J. J., Pruss, D., & Wolffe, A. P. (1993). A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell, 72, 7384.CrossRefGoogle ScholarPubMed

Lencz, T., Knowles, E., Davies, G., Guha, S., Liewald, D. C., Starr, J. M., et al. (2014). Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: A report from the Cognitive Genomics ConsorTium (COGENT). Molecular Psychiatry, 19, 168174. https://doi.org/10.1038/mp.2013.166CrossRefGoogle Scholar

Levenson, J. M., O’Riordan, K. J., Brown, K. D., Trinh, M. A., Molfese, D. L., & Sweatt, J. D. (2004). Regulation of histone acetylation during memory formation in the hippocampus. Journal of Biological Chemistry, 279, 4054540559.CrossRefGoogle ScholarPubMed

Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., et al. (2013). The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45, 580585. https://doi.org/10.1038/ng.2653CrossRefGoogle Scholar

Lubin, F. D., Roth, T. L., & Sweatt, J. D. (2008). Epigenetic regulation of bdnf gene transcription in the consolidation of fear memory. Journal of Neuroscience, 28, 1057610586.CrossRefGoogle ScholarPubMed

MacDonald, P. A., Ganjavi, H., Collins, D. L., Evans, A. C., & Karama, S. (2014). Investigating the relation between striatal volume and IQ. Brain Imaging and Behavior, 8, 5259. https://doi.org/10.1007/s11682-013-9242-3CrossRefGoogle ScholarPubMed

Mackey, A. P., Miller Singley, A. T., & Bunge, S. A. (2013). Intensive reasoning training alters patterns of brain connectivity at rest. Journal of Neuroscience, 33, 47964803. https://doi.org/10.1523/JNEUROSCI.4141-12.2013CrossRefGoogle ScholarPubMed

Mackintosh, N. (2011). IQ and human intelligence. Oxford: Oxford University Press.Google Scholar

Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747753.CrossRefGoogle ScholarPubMed

Marioni, R. E., McRae, A. F., Bressler, J., Colicino, E., Hannon, E., Li, S., et al. (2018). Meta-analysis of epigenome-wide association studies of cognitive abilities. Molecular Psychiatry, 23(11), 21332144. https://doi.org/10.1038/s41380-017-0008-yCrossRefGoogle ScholarPubMed

McKay, J. A., Groom, A., Potter, C., Coneyworth, L. J., Ford, D., Mathers, J. C., et al. (2012). Genetic and non-genetic influences during pregnancy on infant global and site specific DNA methylation: Role for golate gene variants and vitamin B12. PLoS One, 7, e33290. https://doi.org/10.1371/journal.pone.0033290CrossRefGoogle Scholar

Nativio, R., Donahue, G., Berson, A., Lan, Y. M., Amlie-Wolf, A., Tuzer, F., et al. (2018). Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nature Neuroscience, 21, 497505. https://doi.org/10.1038/s41593-018-0101-9CrossRefGoogle ScholarPubMed

Neubert, F.-X., Mars, R. B., Sallet, J., & Rushworth, M. F. S. (2015). Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. Proceedings of the National Academy of Sciences, 112, E2695E2704. https://doi.org/10.1073/pnas.1410767112CrossRefGoogle ScholarPubMed

Oliveira, A. M. M., Hemstedt, T. J., & Bading, H. (2012). Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities. Nature Neuroscience, 15, 11111113.CrossRefGoogle ScholarPubMed

Penner, M. R., Roth, T. L., Chawla, M. K., Hoang, L. T., Roth, E. D., Lubin, F. D., et al. (2011). Age-related changes in Arc transcription and DNA methylation within the hippocampus. Neurobiology of Aging, 32, 21982210. https://doi.org/10.1016/j.neurobiolaging.2010.01.009CrossRefGoogle ScholarPubMed

Presente, A., Boyles, R. S., Serway, C. N., de Belle, J. S., & Andres, A. J. (2004). Notch is required for long-term memory in Drosophila. Proceedings of the National Academy of Sciences, 101(6), 17641768. https://doi.org/10.1073/pnas.0308259100CrossRefGoogle ScholarPubMed

Reolon, G. K., Maurmann, N., Werenicz, A., Garcia, V. A., Schroder, N., Wood, M. A., et al. (2011). Posttraining systemic administration of the histone deacetylase inhibitor sodium butyrate ameliorates aging-related memory decline in rats. Behavioural Brain Research, 221(1), 329332. https://doi.org/10.1016/j.bbr.2011.03.033CrossRefGoogle ScholarPubMed

Rimfeld, K., Shakeshaft, N. G., Malanchini, M., Rodic, M., Selzam, S., Schofield, K., et al. (2017). Phenotypic and genetic evidence for a unifactorial structure of spatial abilities. Proceedings of the National Academy of Sciences, 114, 27772782. https://doi.org/10.1073/pnas.1607883114CrossRefGoogle ScholarPubMed

Rogowski, K., van Dijk, J., Magiera, M. M., Bosc, C., Deloulme, J.-C., Bosson, A., et al. (2010). A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell, 143, 564578. https://doi.org/10.1016/j.cell.2010.10.014CrossRefGoogle ScholarPubMed

Roth, C., Magnus, P., Schjolberg, S., Stoltenberg, C., Suren, P., McKeague, I. W., et al. (2011). Folic acid supplements in pregnancy and severe language delay in children. Journal of the American Medical Association, 306, 15661573.CrossRefGoogle ScholarPubMed

Rush, E. C., Katre, P., & Yajnik, C. S. (2014). Vitamin B12: One carbon metabolism, fetal growth and programming for chronic disease. European Journal of Clinical Nutrition, 68, 27.CrossRefGoogle ScholarPubMed

Sakakibara, E., Takizawa, R., Kawakubo, Y., Kuwabara, H., Kono, T., Hamada, K., et al. (2018). Genetic influences on prefrontal activation during a verbal fluency task in children: A twin study using near‐infrared spectroscopy. Brain and Behavior, 8, e00980. https://doi.org/10.1002/brb3.980CrossRefGoogle ScholarPubMed

Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., de Leeuw, C. A., et al. (2018). Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 50, 912919. https://doi.org/10.1038/s41588-018-0152-6CrossRefGoogle ScholarPubMed

Schiepers, O. J. G., van Boxtel, M. P. J., de Groot, R. H. M., Jolles, J., Kok, F. J., Verhoef, P., et al. (2011). DNA methylation and cognitive functioning in healthy older adults. British Journal of Nutrition, 107, 744748. https://doi.org/10.1017/S0007114511003576CrossRefGoogle ScholarPubMed

Schlagenhauf, F., Rapp, M. A., Huys, Q. J. M., Beck, A., Wüstenberg, T., Deserno, L., et al. (2013). Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence. Human Brain Mapping, 34, 14901499. https://doi.org/10.1002/hbm.22000CrossRefGoogle ScholarPubMed

Schott, B. H., Minuzzi, L., Krebs, R. M., Elmenhorst, D., Lang, M., Winz, O. H., et al. (2008). Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. Journal of Neuroscience, 28, 1431114319. https://doi.org/10.1523/jneurosci.2058-08.2008CrossRefGoogle ScholarPubMed

Shah, S., McRae, A. F., Marioni, R. E., Harris, S. E., Gibson, J., Henders, A. K., et al. (2014). Genetic and environmental exposures constrain epigenetic drift over the human life course. Genome Research, 24, 17251733. https://doi.org/10.1101/gr.176933.114CrossRefGoogle ScholarPubMed

Sinn, D. I., Kim, S. J., Chu, K., Jung, K. H., Lee, S. T., Song, E. C., et al. (2007). Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation. Neurobiology of Disease, 26, 464472. https://doi.org/10.1016/j.nbd.2007.02.006CrossRefGoogle ScholarPubMed

Smith, A. K., Kilaru, V., Klengel, T., Mercer, K. B., Bradley, B., Conneely, K. N., et al. (2015). DNA extracted from saliva for methylation studies of psychiatric traits: Evidence for tissue specificity and relatedness to brain. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 168B, 3644.CrossRefGoogle Scholar

Sniekers, S., Stringer, S., Watanabe, K., Jansen, P. R., Coleman, J. R. I., Krapohl, E., et al. (2017). Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nature Genetics, 49, 11071112. https://doi.org/10.1038/ng.3869CrossRefGoogle ScholarPubMed

Spengler, M., Gottschling, J., Hahn, E., Tucker-Drob, E. M., Harzer, C., & Spinath, F. M. (2018). Does the heritability of cognitive abilities vary as a function of parental education? Evidence from a German twin sample. PLoS One, 13, 115. https://doi.org/10.1371/journal.pone.0196597CrossRefGoogle ScholarPubMed

Starnawska, A., Tan, Q., McGue, M., Mors, O., Borglum, A. D., Christensen, K., et al. (2017). Epigenome-wide association study of cognitive functioning in middle-aged monozygotic twins. Frontiers in Aging Neuroscience, 9, 413. https://doi.org/10.3389/fnagi.2017.00413CrossRefGoogle ScholarPubMed

Stefanko, D. P., Barrett, R. M., Ly, A. R., Reolon, G. K., & Wood, M. A. (2009). Modulation of long-term memory for object recognition via HDAC inhibition. Proceedings of the National Academy of Sciences, 106, 94479452. https://doi.org/10.1073/pnas.0903964106CrossRefGoogle ScholarPubMed

Sternberg, R. J. (2003). Wisdom, intelligence, and creativity synthesized. New York: Cambridge University Press.CrossRefGoogle Scholar

Surén, P., Roth, C., Bresnahan, M., Haugen, M., Hornig, M., Hirtz, D., et al. (2013). Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. Journal of the American Medical Association, 309, 570577. https://doi.org/10.1001/jama.2012.155925CrossRefGoogle ScholarPubMed

Trampush, J. W., Yang, M. L. Z., Yu, J., Knowles, E., Davies, G., Liewald, D. C., et al. (2017). GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: A report from the COGENT consortium. Molecular Psychiatry, 22, 336345. https://doi.org/10.1038/mp.2016.244CrossRefGoogle ScholarPubMed

Ursini, G., Bollati, V., Fazio, L., Porcelli, A., Iacovelli, L., Catalani, A., et al. (2011). Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. Journal of Neuroscience, 31, 66926698. https://doi.org/10.1523/JNEUROSCI.6631-10.2011CrossRefGoogle ScholarPubMed

Van Der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. J. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113, 842861.CrossRefGoogle ScholarPubMed

Vecsey, C. G., Hawk, J. D., Lattal, K. M., Stein, J. M., Fabian, S. A., Attner, M. A., et al. (2007). Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. Journal of Neuroscience, 27, 61286140. https://doi.org/10.1523/JNEUROSCI.0296-07.2007CrossRefGoogle ScholarPubMed

Vernes, S. C., Newbury, D. F., Abrahams, B. S., Winchester, L., Nicod, J., Groszer, M., et al. (2008). A functional genetic link between distinct developmental language disorders. New England Journal of Medicine, 359(22), 23372345. https://doi.org/10.1056/NEJMoa0802828CrossRefGoogle ScholarPubMed

Vettese-Dadey, M., Grant, P. A., Hebbes, T. R., Crane- Robinson, C., Allis, C. D., & Workman, J. L. (1996). Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO Journal, 15(10), 25082518.CrossRefGoogle Scholar

Vitolo, J. M., Thiriet, C., & Hayes, J. J. (2000). The H3-H4 N-terminal tail domains are the primary mediators of transcription factor IIIA access to 5S DNA within a nucleosome. Molecular and Cellular Biology, 20(6), 21672175.CrossRefGoogle ScholarPubMed

Vukojevic, V., Kolassa, I. T., Fastenrath, M., Gschwind, L., Spalek, K., Milnik, A., et al. (2014). Epigenetic modification of the glucocorticoid receptor gene is linked to traumatic memory and post-traumatic stress disorder risk in genocide survivors. Journal of Neuroscience, 34, 1027410284. https://doi.org/10.1523/JNEUROSCI.1526-14.2014CrossRefGoogle ScholarPubMed

Walton, E., Hass, J., Liu, J., Roffman, J. L., Bernardoni, F., Roessner, V., et al. (2016). Correspondence of DNA methylation between blood and brain tissue and its application to schizophrenia research. Schizophrenia Bulletin, 42, 406414. https://doi.org/10.1093/schbul/sbv074CrossRefGoogle ScholarPubMed

Walton, E., Liu, J. Y., Hass, J., White, T., Scholz, M., Roessner, V., et al. (2014). MB-COMT promoter DNA methylation is associated with working-memory processing in schizophrenia patients and healthy controls. Epigenetics, 9, 11011107. https://doi.org/10.4161/epi.29223CrossRefGoogle ScholarPubMed

Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., et al. (2008). Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genetics, 40, 897903.CrossRefGoogle ScholarPubMed

Weissberger, G. H., Nation, D. A., Nguyen, C. P., Bondi, M. W., & Han, S. D. (2018). Meta-analysis of cognitive ability differences by apolipoprotein e genotype in young humans. Neuroscience and Biobehavioral Reviews, 94, 4958.CrossRefGoogle ScholarPubMed

Whitehouse, A. J., Bishop, D. V. M., Ang, Q. W., Pennell, C. E., & Fisher, S. E. (2011). CNTNAP2 variants affect early language development in the general population. Genes, Brain and Behavior, 10, 451456.CrossRefGoogle ScholarPubMed

Wu, L., Sun, T., Kobayashi, K., Gao, P., & Griffin, J. D. (2002). Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Molecular and Cellular Biology, 22(21), 76887700.CrossRefGoogle ScholarPubMed

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., et al. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42, 565569. https://doi.org/10.1038/ng.608CrossRefGoogle ScholarPubMed

Zhang, R.-R., Cui, Q.-Y., Murai, K., Lim, Y. C., Smith, Z. D., Jin, S., et al. (2013). Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell, 13, 237245. https://doi.org/10.1016/j.stem.2013.05.006CrossRefGoogle ScholarPubMed