A nurse is caring for a client who has testicular cancer and is experiencing peripheral neuropathy

1. Pike CT, Birnbaum HG, Muehlenbein CE, Pohl GM, Natale RB. Healthcare costs and workloss burden of patients with chemotherapy-associated peripheral neuropathy in breast, ovarian, head and neck, and nonsmall cell lung cancer. Chemother Res Pract. 2012;2012:913848. [PMC free article] [PubMed] [Google Scholar]

2. Brugnoletti F, Morris EB, Laningham FH, et al. Recurrent intrathecal methotrexate induced neurotoxicity in an adolescent with acute lymphoblastic leukemia: Serial clinical and radiologic findings. Pediatr Blood Cancer. 2009 Feb;52(2):293–5. [PMC free article] [PubMed] [Google Scholar]

3. Moreau P, Pylypenko H, Grosicki S, et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. The Lancet Oncology. 2011 May;12(5):431–40. [PubMed] [Google Scholar]

4. Briani C, Vitaliani R, Grisold W, et al. Spectrum of paraneoplastic disease associated with lymphoma. Neurology. 2011 Feb 22;76(8):705–10. [PubMed] [Google Scholar]

5. Stubgen JP. Lymphoma-associated dysimmune polyneuropathies. J Neurol Sci. 2015 Aug 15;355(1-2):25–36. [PubMed] [Google Scholar]

6. Baehring JM, Batchelor TT. Diagnosis and management of neurolymphomatosis. Cancer journal (Sudbury, Mass. 2012 Sep-Oct;18(5):463–8. [PubMed] [Google Scholar]

7. Grisariu S, Avni B, Batchelor TT, et al. Neurolymphomatosis: an International Primary CNS Lymphoma Collaborative Group report. Blood. 2010 Jun 17;115(24):5005–11. [PMC free article] [PubMed] [Google Scholar]

8. Grisold WGA, Marosi Ch, Meng S, Briani Ch. Neuropathies associated with lymphoma. Neuro-Oncology Practice. 2015;2(4):167–178. 2015. [Google Scholar]

9. Viala K1BA, Maisonobe T, Léger JM. Neuropathy in lymphoma: a relationship between the pattern of neuropathy, type of lymphoma and prognosis? J Neurol Neurosurg Psychiatry. 2008 Jul;79(7):778–82. Epub 2007 Oct 30. [PubMed] [Google Scholar]

10. Baehring JM, Damek D, Martin EC, Betensky RA, Hochberg FH. Neurolymphomatosis. Neuro Oncol. 2003 Apr;5(2):104–15. [PMC free article] [PubMed] [Google Scholar]

11. Tomita MKH, Kawagashira Y, et al. Clinicopathological features of neuropathy associated with lymphoma. Brain. 2013;136(Pt 8):2563–2578. 2013. [PubMed] [Google Scholar]

12. Bayat EKJ. Neurological complications in plasma cell dyscrasias. Handb Clin Neurol. 2012;105:731–46. 2012. [PubMed] [Google Scholar]

13. Kelly JJ1KD. Lymphoma and peripheral neuropathy: a clinical review. Muscle Nerve. 2005 Mar;31(3):301–13. 2005. [PubMed] [Google Scholar]

14. Amato AA, Barohn RJ, Sahenk Z, Tutschka PJ, Mendell JR. Polyneuropathy complicating bone marrow and solid organ transplantation. Neurology. 1993 Aug;43(8):1513–8. [PubMed] [Google Scholar]

15. Krouwer HG, Wijdicks EF. Neurologic complications of bone marrow transplantation. Neurol Clin. 2003 Feb;21(1):319–52. [PubMed] [Google Scholar]

16. Mathew RM, Rosenfeld MR. Neurologic Complications of Bone Marrow and Stem-cell Transplantation in Patients with Cancer. Current treatment options in neurology. 2007 Jul;9(4):308–14. [PubMed] [Google Scholar]

17. Rodriguez TE. Neurologic complications of bone marrow transplantation. Handb Clin Neurol. 2014;121:1295–304. [PubMed] [Google Scholar]

18. Gertz MA. Immunoglobulin light chain amyloidosis: 2014 update on diagnosis, prognosis, and treatment. American journal of hematology. 2014 Dec;89(12):1132–40. [PubMed] [Google Scholar]

19. Shin SC, Robinson-Papp J. Amyloid neuropathies. The Mount Sinai journal of medicine, New York. 2012 Nov-Dec;79(6):733–48. [PMC free article] [PubMed] [Google Scholar]

20. Common Terminology Criteria for Adverse Events (CTCAE) v4.0. 2016 Available from: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm.

21. Pachman DR, Qin R, Seisler DK, et al. Clinical Course of Oxaliplatin-Induced Neuropathy: Results From the Randomized Phase III Trial N08CB (Alliance) J Clin Oncol. 2015 Oct 20;33(30):3416–22. [PMC free article] [PubMed] [Google Scholar]

22. Binda D, Vanhoutte EK, Cavaletti G, et al. Rasch-built Overall Disability Scale for patients with chemotherapy-induced peripheral neuropathy (CIPN-R-ODS) Eur J Cancer. 2013 Sep;49(13):2910–8. [PubMed] [Google Scholar]

23. Cavaletti G, Jann S, Pace A, et al. Multi-center assessment of the Total Neuropathy Score for chemotherapy-induced peripheral neurotoxicity. J Peripher Nerv Syst. 2006 Jun;11(2):135–41. [PubMed] [Google Scholar]

24. Binda D, Cavaletti G, Cornblath DR, Merkies IS, group CI-Ps Rasch-Transformed Total Neuropathy Score clinical version (RT-TNSc((c)) ) in patients with chemotherapy-induced peripheral neuropathy. J Peripher Nerv Syst. 2015 Sep;20(3):328–32. [PubMed] [Google Scholar]

25. Frisina RD, Wheeler HE, Fossa SD, et al. Comprehensive Audiometric Analysis of Hearing Impairment and Tinnitus After Cisplatin-Based Chemotherapy in Survivors of Adult-Onset Cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016 Aug 10;34(23):2712–20. [PMC free article] [PubMed] [Google Scholar]

26. Krarup-Hansen A, Rietz B, Krarup C, Heydorn K, Rorth M, Schmalbruch H. Histology and platinum content of sensory ganglia and sural nerves in patients treated with cisplatin and carboplatin: an autopsy study. Neuropathol Appl Neurobiol. 1999 Feb;25(1):29–40. [PubMed] [Google Scholar]

27. Johnson C, Pankratz VS, Velazquez AI, et al. Candidate pathway-based genetic association study of platinum and platinum-taxane related toxicity in a cohort of primary lung cancer patients. J Neurol Sci. 2015 Feb 15;349(1-2):124–8. [PMC free article] [PubMed] [Google Scholar]

28. Bentzen AG, Balteskard L, Wanderas EH, et al. Impaired health-related quality of life after chemoradiotherapy for anal cancer: late effects in a national cohort of 128 survivors. Acta Oncol. 2013 May;52(4):736–44. [PubMed] [Google Scholar]

29. Schmoll HJ, Harstrick A, Bokemeyer C, et al. Single-agent carboplatinum for advanced seminoma. A phase II study. Cancer. 1993 Jul 1;72(1):237–43. [PubMed] [Google Scholar]

30. Vandenput I, Vergote I, Neven P, Amant F. Weekly paclitaxel-carboplatin regimen in patients with primary advanced or recurrent endometrial carcinoma. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society. 2012 May;22(4):617–22. [PubMed] [Google Scholar]

31. Pignata S, Scambia G, Ferrandina G, et al. Carboplatin plus paclitaxel versus carboplatin plus pegylated liposomal doxorubicin as first-line treatment for patients with ovarian cancer: the MITO-2 randomized phase III trial. J Clin Oncol. 2011 Sep 20;29(27):3628–35. [PubMed] [Google Scholar]

32. Shahriari-Ahmadi A, Fahimi A, Payandeh M, Sadeghi M. Prevalence of Oxaliplatin-induced Chronic Neuropathy and Influencing Factors in Patients with Colorectal Cancer in Iran. Asian Pacific journal of cancer prevention : APJCP. 2015;16(17):7603–6. [PubMed] [Google Scholar]

33. Gill JS, Windebank AJ. Cisplatin-induced apoptosis in rat dorsal root ganglion neurons is associated with attempted entry into the cell cycle. J Clin Invest. 1998 Jun 15;101(12):2842–50. [PMC free article] [PubMed] [Google Scholar]

34. McDonald ES, Windebank AJ. Cisplatin-induced apoptosis of DRG neurons involves bax redistribution and cytochrome c release but not fas receptor signaling. Neurobiol Dis. 2002 Mar;9(2):220–33. [PubMed] [Google Scholar]

35. Podratz JL, Knight AM, Ta LE, et al. Cisplatin induced Mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol Dis. 2011 Mar;41(3):661–8. [PMC free article] [PubMed] [Google Scholar]

36. Park SB, Lin CS, Krishnan AV, Goldstein D, Friedlander ML, Kiernan MC. Oxaliplatin-induced neurotoxicity: changes in axonal excitability precede development of neuropathy. Brain. 2009 Oct;132(Pt 10):2712–23. [PubMed] [Google Scholar]

37. Sittl R, Lampert A, Huth T, et al. Anticancer drug oxaliplatin induces acute cooling-aggravated neuropathy via sodium channel subtype Na(V)1.6-resurgent and persistent current. Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6704–9. [PMC free article] [PubMed] [Google Scholar]

38. Pachman DR, Qin R, Seisler DK, et al. Clinical course of oxaliplatin-induced neuropathy: results from the randomized phase III trial N08CB (Alliance) Journal of Clinical Oncology. 2015;33(30):3416–22. [PMC free article] [PubMed] [Google Scholar]

39. Di Lorenzo G, Bracarda S, Gasparro D, et al. Lack of Cumulative Toxicity Associated With Cabazitaxel Use in Prostate Cancer. Medicine (Baltimore) 2016 Jan;95(2):e2299. [PMC free article] [PubMed] [Google Scholar]

40. Omlin A, Sartor O, Rothermundt C, et al. Analysis of Side Effect Profile of Alopecia, Nail Changes, Peripheral Neuropathy, and Dysgeusia in Prostate Cancer Patients Treated With Docetaxel and Cabazitaxel. Clinical genitourinary cancer. 2015 Aug;13(4):e205–8. [PubMed] [Google Scholar]

41. Loprinzi CL, Reeves BN, Dakhil SR, et al. Natural history of paclitaxel-associated acute pain syndrome: prospective cohort study NCCTG N08C1. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2011 Apr 10;29(11):1472–8. [PMC free article] [PubMed] [Google Scholar]

42. Reeves BN, Dakhil SR, Sloan JA, et al. Further data supporting that paclitaxel-associated acute pain syndrome is associated with development of peripheral neuropathy: North Central Cancer Treatment Group trial N08C1. Cancer. 2012 Oct 15;118(20):5171–8. [PMC free article] [PubMed] [Google Scholar]

43. Komiya Y, Tashiro T. Effects of taxol on slow and fast axonal transport. Cell Motil Cytoskeleton. 1988;11(3):151–6. [PubMed] [Google Scholar]

44. Xiao WH, Zheng H, Bennett GJ. Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison with the neuropathy induced by paclitaxel. Neuroscience. 2012 Feb 17;203:194–206. [PMC free article] [PubMed] [Google Scholar]

45. Zheng H, Xiao WH, Bennett GJ. Mitotoxicity and bortezomib-induced chronic painful peripheral neuropathy. Exp Neurol. 2012 Dec;238(2):225–34. [PubMed] [Google Scholar]

46. Lisse TS, Middleton LJ, Pellegrini AD, et al. Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):E2189–98. [PMC free article] [PubMed] [Google Scholar]

47. Bokemeyer C, Berger CC, Kuczyk MA, Schmoll HJ. Evaluation of long-term toxicity after chemotherapy for testicular cancer. J Clin Oncol. 1996 Nov;14(11):2923–32. [PubMed] [Google Scholar]

48. Jain P, Gulati S, Seth R, Bakhshi S, Toteja GS, Pandey RM. Vincristine-induced neuropathy in childhood ALL (acute lymphoblastic leukemia) survivors: prevalence and electrophysiological characteristics. J Child Neurol. 2014 Jul;29(7):932–7. [PubMed] [Google Scholar]

49. Lavoie Smith EM, Li L, Chiang C, et al. Patterns and severity of vincristine-induced peripheral neuropathy in children with acute lymphoblastic leukemia. J Peripher Nerv Syst. 2015 Mar;20(1):37–46. [PMC free article] [PubMed] [Google Scholar]

50. Ramchandren S, Leonard M, Mody RJ, et al. Peripheral neuropathy in survivors of childhood acute lymphoblastic leukemia. J Peripher Nerv Syst. 2009 Sep;14(3):184–9. [PMC free article] [PubMed] [Google Scholar]

51. Atas E, Korkmazer N, Artik HA, Babacan O, Kesik V. Raynaud's phenomenon in a child with medulloblastoma as a late effect of chemotherapy. Journal of cancer research and therapeutics. 2015 Jul-Sep;11(3):666. [PubMed] [Google Scholar]

52. Rosenthal S, Kaufman S. Vincristine neurotoxicity. Ann Intern Med. 1974 Jun;80(6):733–7. [PubMed] [Google Scholar]

53. Chan SY, Worth R, Ochs S. Block of axoplasmic transport in vitro by vinca alkaloids. J Neurobiol. 1980 May;11(3):251–64. [PubMed] [Google Scholar]

54. Geisler S, Doan RA, Strickland A, Huang X, Milbrandt J, DiAntonio A. Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain. 2016 Dec;139(Pt 12):3092–108. [PMC free article] [PubMed] [Google Scholar]

55. Carlson K, Ocean AJ. Peripheral neuropathy with microtubule-targeting agents: occurrence and management approach. Clinical breast cancer. 2011 Apr;11(2):73–81. [PubMed] [Google Scholar]

56. Gopal AK, Ramchandren R, O'Connor OA, et al. Safety and efficacy of brentuximab vedotin for Hodgkin lymphoma recurring after allogeneic stem cell transplantation. Blood. 2012 Jul 19;120(3):560–8. [PMC free article] [PubMed] [Google Scholar]

57. Krop IE, Modi S, LoRusso PM, et al. Phase 1b/2a study of trastuzumab emtansine (T-DM1), paclitaxel, and pertuzumab in HER2-positive metastatic breast cancer. Breast Cancer Res. 2016 Mar 15;18(1):34. [PMC free article] [PubMed] [Google Scholar]

58. Chaudhry V, Cornblath DR, Polydefkis M, Ferguson A, Borrello I. Characteristics of bortezomib- and thalidomide-induced peripheral neuropathy. J Peripher Nerv Syst. 2008 Dec;13(4):275–82. [PMC free article] [PubMed] [Google Scholar]

59. Richardson PG, Briemberg H, Jagannath S, et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol. 2006 Jul 1;24(19):3113–20. [PubMed] [Google Scholar]

60. Mauermann ML, Blumenreich MS, Dispenzieri A, Staff NP. A case of peripheral nerve microvasculitis associated with multiple myeloma and bortezomib treatment. Muscle Nerve. 2012 Dec;46(6):970–7. [PubMed] [Google Scholar]

61. Ravaglia S, Corso A, Piccolo G, et al. Immune-mediated neuropathies in myeloma patients treated with bortezomib. Clin Neurophysiol. 2008 Nov;119(11):2507–12. [PubMed] [Google Scholar]

62. Saifee TA, Elliott KJ, Rabin N, et al. Bortezomib-induced inflammatory neuropathy. J Peripher Nerv Syst. 2010 Dec;15(4):366–8. [PubMed] [Google Scholar]

63. Kumar SK, Berdeja JG, Niesvizky R, et al. Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: an open-label phase 1/2 study. Lancet Oncol. 2014 Dec;15(13):1503–12. [PubMed] [Google Scholar]

64. Stewart AK, Rajkumar SV, Dimopoulos MA, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015 Jan 08;372(2):142–52. [PubMed] [Google Scholar]

65. Meregalli C, Chiorazzi A, Carozzi VA, et al. Evaluation of tubulin polymerization and chronic inhibition of proteasome as citotoxicity mechanisms in bortezomib-induced peripheral neuropathy. Cell Cycle. 2014;13(4):612–21. [PubMed] [Google Scholar]

66. Staff NP, Podratz JL, Grassner L, et al. Bortezomib alters microtubule polymerization and axonal transport in rat dorsal root ganglion neurons. Neurotoxicology. 2013 Dec;39:124–31. [PMC free article] [PubMed] [Google Scholar]

67. Casafont I, Berciano MT, Lafarga M. Bortezomib induces the formation of nuclear poly(A) RNA granules enriched in Sam68 and PABPN1 in sensory ganglia neurons. Neurotox Res. 2010 Feb;17(2):167–78. [PubMed] [Google Scholar]

68. Palanca A, Casafont I, Berciano MT, Lafarga M. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons. Cell Mol Life Sci. 2014 May;71(10):1961–75. [PubMed] [Google Scholar]

69. Grover JK, Uppal G, Raina V. The adverse effects of thalidomide in relapsed and refractory patients of multiple myeloma. Ann Oncol. 2002 Oct;13(10):1636–40. [PubMed] [Google Scholar]

70. Morawska M, Grzasko N, Kostyra M, Wojciechowicz J, Hus M. Therapy-related peripheral neuropathy in multiple myeloma patients. Hematol Oncol. 2015 Dec;33(4):113–9. [PubMed] [Google Scholar]

71. Fullerton PM, O'Sullivan DJ. Thalidomide neuropathy: a clinical electrophysiological, and histological follow-up study. J Neurol Neurosurg Psychiatry. 1968 Dec;31(6):543–51. [PMC free article] [PubMed] [Google Scholar]

72. Briani C, Torre CD, Campagnolo M, et al. Lenalidomide in patients with chemotherapy-induced polyneuropathy and relapsed or refractory multiple myeloma: results from a single-centre prospective study. J Peripher Nerv Syst. 2013 Mar;18(1):19–24. [PubMed] [Google Scholar]

73. San Miguel J, Weisel K, Moreau P, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013 Oct;14(11):1055–66. [PubMed] [Google Scholar]

74. Kirchmair R, Tietz AB, Panagiotou E, et al. Therapeutic angiogenesis inhibits or rescues chemotherapy-induced peripheral neuropathy: taxol- and thalidomide-induced injury of vasa nervorum is ameliorated by VEGF. Mol Ther. 2007 Jan;15(1):69–75. [PubMed] [Google Scholar]

75. Kirchmair R, Walter DH, Ii M, et al. Antiangiogenesis mediates cisplatin-induced peripheral neuropathy: attenuation or reversal by local vascular endothelial growth factor gene therapy without augmenting tumor growth. Circulation. 2005 May 24;111(20):2662–70. [PubMed] [Google Scholar]

76. Voskens CJ, Goldinger SM, Loquai C, et al. The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network. PLoS One. 2013;8(1):e53745. [PMC free article] [PubMed] [Google Scholar]

77. Zimmer L, Goldinger SM, Hofmann L, et al. Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy. Eur J Cancer. 2016 Apr 12; [PubMed] [Google Scholar]

78. de Maleissye MF, Nicolas G, Saiag P. Pembrolizumab-Induced Demyelinating Polyradiculoneuropathy. N Engl J Med. 2016 Jul 21;375(3):296–7. [PubMed] [Google Scholar]

79. Aya F, Ruiz-Esquide V, Viladot M, et al. Vasculitic neuropathy induced by pembrolizumab. Ann Oncol. 2016 Nov 17; [PubMed] [Google Scholar]

80. Nokia MS, Anderson ML, Shors TJ. Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain. Eur J Neurosci. 2012 Dec;36(11):3521–30. [PMC free article] [PubMed] [Google Scholar]

81. Holmes D. Trying to unravel the mysteries of chemobrain. Lancet Neurol. 2013 Jun;12(6):533–4. [PubMed] [Google Scholar]

82. Albers JW, Chaudhry V, Cavaletti G, Donehower RC. Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database Syst Rev. 2014;3:CD005228. [PubMed] [Google Scholar]

83. Majithia N, Temkin SM, Ruddy KJ, Beutler AS, Hershman DL, Loprinzi CL. National Cancer Institute-supported chemotherapy-induced peripheral neuropathy trials: outcomes and lessons. Support Care Cancer. 2016 Mar;24(3):1439–47. [PMC free article] [PubMed] [Google Scholar]

84. Chaudhry V, Chaudhry M, Crawford TO, Simmons-O'Brien E, Griffin JW. Toxic neuropathy in patients with pre-existing neuropathy. Neurology. 2003 Jan 28;60(2):337–40. [PubMed] [Google Scholar]

85. Chauvenet AR, Shashi V, Selsky C, Morgan E, Kurtzberg J, Bell B. Vincristine-induced neuropathy as the initial presentation of charcot-marie-tooth disease in acute lymphoblastic leukemia: a Pediatric Oncology Group study. J Pediatr Hematol Oncol. 2003 Apr;25(4):316–20. [PubMed] [Google Scholar]

86. Martino MA, Miller E, Grendys EC., Jr The administration of chemotherapy in a patient with Charcot-Marie-Tooth and ovarian cancer. Gynecol Oncol. 2005 May;97(2):710–2. [PubMed] [Google Scholar]

87. Nakamura T, Hashiguchi A, Suzuki S, Uozumi K, Tokunaga S, Takashima H. Vincristine exacerbates asymptomatic Charcot-Marie-tooth disease with a novel EGR2 mutation. Neurogenetics. 2012 Feb;13(1):77–82. [PubMed] [Google Scholar]

88. Abraham JE, Guo Q, Dorling L, et al. Replication of genetic polymorphisms reported to be associated with taxane-related sensory neuropathy in patients with early breast cancer treated with Paclitaxel. Clin Cancer Res. 2014 May 1;20(9):2466–75. [PubMed] [Google Scholar]

89. Apellaniz-Ruiz M, Lee MY, Sanchez-Barroso L, et al. Whole-exome sequencing reveals defective CYP3A4 variants predictive of paclitaxel dose-limiting neuropathy. Clin Cancer Res. 2015 Jan 15;21(2):322–8. [PubMed] [Google Scholar]

90. Azoulay D, Leibovici A, Sharoni R, et al. Association between Met-BDNF allele and vulnerability to paclitaxel-induced peripheral neuropathy. Breast Cancer Res Treat. 2015 Oct;153(3):703–4. [PubMed] [Google Scholar]

91. Baldwin RM, Owzar K, Zembutsu H, et al. A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clinical cancer research : an official journal of the American Association for Cancer Research. 2012 Sep 15;18(18):5099–109. [PMC free article] [PubMed] [Google Scholar]

92. Beutler AS, Kulkarni AA, Kanwar R, et al. Sequencing of Charcot-Marie-Tooth disease genes in a toxic polyneuropathy. Ann Neurol. 2014 Nov;76(5):727–37. [PMC free article] [PubMed] [Google Scholar]

93. Boora GK, Kulkarni AA, Kanwar R, et al. Association of the Charcot-Marie-Tooth disease gene ARHGEF10 with paclitaxel induced peripheral neuropathy in NCCTG N08CA (Alliance) J Neurol Sci. 2015 Oct 15;357(1-2):35–40. [PMC free article] [PubMed] [Google Scholar]

94. Chhibber A, Mefford J, Stahl EA, et al. Polygenic inheritance of paclitaxel-induced sensory peripheral neuropathy driven by axon outgrowth gene sets in CALGB 40101 (Alliance) Pharmacogenomics J. 2014 Aug;14(4):336–42. [PMC free article] [PubMed] [Google Scholar]

95. Leandro-Garcia LJ, Inglada-Perez L, Pita G, et al. Genome-wide association study identifies ephrin type A receptors implicated in paclitaxel induced peripheral sensory neuropathy. J Med Genet. 2013 Sep;50(9):599–605. [PubMed] [Google Scholar]

96. Leandro-Garcia LJ, Leskela S, Jara C, et al. Regulatory polymorphisms in beta-tubulin IIa are associated with paclitaxel-induced peripheral neuropathy. Clin Cancer Res. 2012 Aug 15;18(16):4441–8. [PMC free article] [PubMed] [Google Scholar]

97. Schneider BP, Li L, Radovich M, et al. Genome-Wide Association Studies for Taxane-Induced Peripheral Neuropathy in ECOG-5103 and ECOG-1199. Clin Cancer Res. 2015 Nov 15;21(22):5082–91. [PMC free article] [PubMed] [Google Scholar]

98. Wheeler HE, Gamazon ER, Wing C, et al. Integration of cell line and clinical trial genome-wide analyses supports a polygenic architecture of Paclitaxel-induced sensory peripheral neuropathy. Clin Cancer Res. 2013 Jan 15;19(2):491–9. [PMC free article] [PubMed] [Google Scholar]

99. Broyl A, Corthals SL, Jongen JL, et al. Mechanisms of peripheral neuropathy associated with bortezomib and vincristine in patients with newly diagnosed multiple myeloma: a prospective analysis of data from the HOVON-65/GMMG-HD4 trial. Lancet Oncol. 2010 Nov;11(11):1057–65. [PubMed] [Google Scholar]

100. Diouf B, Crews KR, Lew G, et al. Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. Jama. 2015 Feb 24;313(8):815–23. [PMC free article] [PubMed] [Google Scholar]

101. Johnson DC, Corthals SL, Walker BA, et al. Genetic factors underlying the risk of thalidomide-related neuropathy in patients with multiple myeloma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2011 Mar 1;29(7):797–804. [PubMed] [Google Scholar]

102. Argyriou AA, Cavaletti G, Antonacopoulou A, et al. Voltage-gated sodium channel polymorphisms play a pivotal role in the development of oxaliplatin-induced peripheral neurotoxicity: results from a prospective multicenter study. Cancer. 2013 Oct 1;119(19):3570–7. [PubMed] [Google Scholar]

103. Chen J, Yin J, Li X, et al. WISP1 polymorphisms contribute to platinum-based chemotherapy toxicity in lung cancer patients. Int J Mol Sci. 2014;15(11):21011–27. [PMC free article] [PubMed] [Google Scholar]

104. Custodio A, Moreno-Rubio J, Aparicio J, et al. Pharmacogenetic predictors of severe peripheral neuropathy in colon cancer patients treated with oxaliplatin-based adjuvant chemotherapy: a GEMCAD group study. Ann Oncol. 2014 Feb;25(2):398–403. [PubMed] [Google Scholar]

105. Lecomte T, Landi B, Beaune P, Laurent-Puig P, Loriot MA. Glutathione S-transferase P1 polymorphism (Ile105Val) predicts cumulative neuropathy in patients receiving oxaliplatin-based chemotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research. 2006 May 15;12(10):3050–6. [PubMed] [Google Scholar]

106. McWhinney-Glass S, Winham SJ, Hertz DL, et al. Cumulative genetic risk predicts platinum/taxane-induced neurotoxicity. Clin Cancer Res. 2013 Oct 15;19(20):5769–76. [PMC free article] [PubMed] [Google Scholar]

107. Bergmann TK, Vach W, Feddersen S, et al. GWAS-based association between RWDD3 and TECTA variants and paclitaxel induced neuropathy could not be confirmed in Scandinavian ovarian cancer patients. Acta Oncol. 2013 May;52(4):871–4. [PubMed] [Google Scholar]

108. Chen EI, Crew KD, Trivedi M, et al. Identifying Predictors of Taxane-Induced Peripheral Neuropathy Using Mass Spectrometry-Based Proteomics Technology. PLoS One. 2015;10(12):e0145816. [PMC free article] [PubMed] [Google Scholar]

109. Gutierrez-Camino A, Martin-Guerrero I, Lopez-Lopez E, et al. Lack of association of the CEP72 rs924607 TT genotype with vincristine-related peripheral neuropathy during the early phase of pediatric acute lymphoblastic leukemia treatment in a Spanish population. Pharmacogenet Genomics. 2015 Nov 25; [PubMed] [Google Scholar]

110. Peng Z, Wang Q, Gao J, et al. Association between GSTP1 Ile105Val polymorphism and oxaliplatin-induced neuropathy: a systematic review and meta-analysis. Cancer Chemother Pharmacol. 2013 Aug;72(2):305–14. [PubMed] [Google Scholar]

111. Chambers SM, Qi Y, Mica Y, et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol. 2012 Jul;30(7):715–20. [PMC free article] [PubMed] [Google Scholar]

112. Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol. 2016 Mar;17(3):170–82. [PubMed] [Google Scholar]

113. Smith EM, Pang H, Cirrincione C, et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. Jama. 2013 Apr 3;309(13):1359–67. [PMC free article] [PubMed] [Google Scholar]

114. Majithia N, Smith TJ, Coyne PJ, et al. Scrambler Therapy for the management of chronic pain. Support Care Cancer. 2016 Jun;24(6):2807–14. [PMC free article] [PubMed] [Google Scholar]


Page 2

Chemotherapeutic agents that cause peripheral neuropathies and associated features

Mechanism of
CIPN
Drug (and
combinations)
Acute neuropathic
symptoms
Type of chronic neuropathyAdditional features
Nuclear and mitochondrial DNA damageCisplatin
  • Sensory neuropathy/ neuronopathy

  • Ataxia

  • “Coasting” common

  • Cranial nerve involvement: hearing loss, tinnitus, ageusia

  • Lhermitte’s phenomenon

CarboplatinSensory neuropathy
Oxaliplatin
  • Cold-induced dysesthesias (hand/face)

  • Muscle cramps

Sensory neuropathy“Coasting” common
Destabilization of microtubule polymersVinca alkaloids: Vincristine Vinblastine Vinorelbine VindesineTaste impairmentSensorimotor neuropathy
  • Occasionally cranial nerves, mononeuropathies, autonomic features

  • Possible “coasting”

Eribulin
  • Demyelinating

  • Sensorimotor neuropathy

Brentuximab vedotinSensorimotor neuropathyConjugated antibody
Ado-trastuzumab EmtansineSensorimotor neuropathyConjugated antibody
Stabilization of microtubule polymersDocetaxelSensory neuropathyOptic neuropathy (rare)
PaclitaxelPain syndrome (myalgia)Sensory neuropathy
Nab-paclitaxelSensorimotor neuropathy
CabalitaxelSensory neuropathy
  • Optic neuropathy

  • Reduced frequency of CIPN

IxabepiloneSensory neuropathy
Proteasome inhibitorBortezomib Carfilzomib Ixazomib
  • Small fiber neuropathy (common)

  • Severe polyradiculoneuropathy (rare)

less CIPN with subcutaneous delivery of bortezomib
Anti-angiogenesisThalidomide Lenalidomide PomalidomideSensory neuropathyPerioral neuropathic symptoms
Miscellaneous/ UnknownNelarabineGBS like with myelopathy (rare)
SuraminDemyelinating neuropathy
IfosfamideSensorimotor neuropathyrare
PemetrexedRare motor predominant